You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 104 Next »


ASIC level requirements summary

RequirementePixUHRSparkPix-SSparkPix-ED (question)
frame rate100kfps1Mfps1Mfps
Power supplies

2.5V Analog

1.3V (AS/DS/IO)

2.5V Analog

1.3V (AS/DS/IO)

0.6V (Current sink!)

1.3V (AS/DS/IO)
Power for each supplyePixUHR - 35 kHzSparkPix-S: supply/ground and power consumptiont.b.d.
Number of GT IOs per ASIC

8 (outputs)
1 clock in

8 (outputs)
1 clock in

t.b.d

(The current agreement is to have 8 outputs)

Expected I/O speed5.25 Gb/s5.25 Gb/s10 Gb/s (question)

Total data bandwidth

42 Gbit/s42 Gbit/s80 Gbit/s(question)





Target Cameras

                


Parameter

(estimated)

Small Camera 

ePixHR/UHR – 140k

2 x 2 ASIC

Super tile

ePixHR/UHR – 1.1M

6 x 6 ASIC

Super tile

ePixHR/UHR – 1M

6 x 5 ASIC

Small Camera 

SparkPix S – 500k

2 x 2 ASIC

Quad Camera 

SparkPix S – 2M

4 x 4 ASIC

Pixels

129,024 px

(168 *192*4)

1,161,216 px

(168 *192*36)

967,680

(168 *192*30)

540,672 px

(352*384*4)

2,162,688 px

(352*384*16)

Rate

35kHz / 100kHz

35kHz / 100kHz

35kHz / 100kHz

1MHz

1MHz

Focal Plane Area

4cm x 4cm

12cm x 12cm

12cm x 10cm

4cm x 4cm

8cm x 8cm

Front side footprint (window)

5cm x 5cm

14cm x 14cm

14cm x 12cm

5cm x 5cm

10cm x 10cm

Power (only ASIC)

0.016 kW/???

0.144 kW/???0.130 kW/???0.021kW0.084 kW

Weight

1.5kg

10kg

9Kg

1.5kg

6kg

Data volume 

56 Gbps/ 160 Gbps

504 Gbps/ 1440 Gbps

420 Gbps/ 1190 Gbps

160 Gbps

640 Gbps



ASIC Power
 
Requirement

Analog Section

Digital Section

0.6V Sink

Analog TPS

ePixUHR 140k

2x2 Detector

SparkPix-S 500k 2x2 Detector

ePixUHR 140k 2x2 Detector

SparkPix-S 500k 2x2 Detector

ePixUHR 140k 2x2 Detector

SparkPix-S 500k 2x2 Detector

ePixUHR 140k 2x2 Detector

SparkPix-S 500k 2x2 Detector

Voltage

1.3 V

1.3V

1.3V

1.3V

??? Maybe

0.6 V

2.5 V

2.5V

Required current

10A

(= 2.5 A* 4 ASIC)

13.4 A

(= 3.35A * 4 ASIC)

- With LVDS transceivers
1.2 A (= 4* 0.3 A)
-With CML transceivers

????

- With LVDS transceivers
2.0 A (= 4* 0.5 A)
-With CML transceivers

????

??? (If existing lower or equal than SparkPixS)

-8 A
(= -2A * 4 ASIC) 

0.4 A

(=0.1 * 4) 

0.4 A

(=0.1 * 4)  










System Requirement

+1.3 V @ +17.5 A

(+30% current safety margin)

+1.3 V @ +3 A

(+30% current safety margin)

[waiting for the CML number] 

+0.6 V @ -11 A

(+30% current safety margin) 

+2.5 V @ +0.5 A

(+30% current safety margin) 

From ASIC to FPGA

          168 * 192 * 12 bit * 14/12 (encoding) = 451,584 bit/frame

@35 kHz framerate: 451,584 bit/frame * 35 kHz = 15.8 Gbps

@100 kHz framerate: 451,584 bit/frame * 100 kHz = 45.2 Gbps


From FPGA to PC

168 * 192 * 12 bit * 66/64 (PGP encoding) = 399,168 bit/frame

@32k - 1 ASIC (35kHz/100kHz): 14 Gbps / 40 Gbps

@140k - 4 ASIC (35kHz/100kHz): 56 Gbps / 160 Gbps

@1M - 30 ASIC (35kHz/100kHz): 420 Gbps / 1.19 Tbps

@1.1M - 36 ASIC (35kHz/100kHz): 504 Gbps / 1.44 Tbps

@4M - 144 ASIC (35kHz/100kHz): 2 Tbps/ 5.76 Tbps

@16M - 576 ASIC (35kHz/100kHz): 8.1 Tbps / 23 Tbps


FPGA Selection


ePixUHR 140k

2x2 Detector

Specs

ePixUHR 1.1M

6x6 Detector

Specs

ePixUHR 1M

6x5 Detector

Specs

SparkPix-S 500k

2x2 Detector

Specs

SparkPix-S 2M

4x4 Detector

Specs

KU15P (-A1156)

Kintex Ultrascale+

FPGA USED IN ePixHR250M

KU15P (-E1517)

Kintex Ultrascale+

KU15P (-A1760)

Kintex Ultrascale+

XCVU160 (-C2104)

Virtex Ultrascale

XCVU190 (-A2577)

Virtex Ultrascale

VU13P (-A2577)

Virtex Ultrascale+

General IO (HD, HP)






48 HD, 486 HP

96 HD, 416 HP

96 HD, 416 HP

52 HD, 364 HP

0 HD, 448 HP

0 HD, 448 HP

High Speed GTs (GTH/GTY)

- ASIC data:

32 = 8 lanes * 4 ASIC

- Spare outputs :

4

- PGP communication:

12 = 12* 160 Gbps/ 275Gbps

(1 Amphenol Transceiver)

Total:

48 High Speed GTs

- ASIC data:

288 = 8 lanes * 36 ASIC

- Spare outputs :

0

- PGP communication:

72 = 12* 1.44 Tbps/ 275Gbps

(6 Amphenol Transceivers)

Total:

360 High Speed GTs

- ASIC data:

240 = 8 lanes * 30 ASIC

- Spare outputs :

0

- PGP communication:

72 = 12 lanes * 1.19 Tbps/ 275Gbps

(6 Amphenol Transceivers)

Suggested 3 transceivers 1.4x compression in the detector

Total:

312 High Speed GTs

(If considering 5x2 Modules, 104 GTs each)


- ASIC data:

32 = 8 lanes * 4 ASIC

- Spare outputs :

4

- PGP communication:

12 = 12* 160 Gbps/ 275Gbps

(1 Amphenol Transceivers)

Total:

48 High Speed GTs

- ASIC data:

128 = 8 lanes * 16 ASIC

- Spare outputs :

0

- PGP communication:

24* = 12* 495 Gbps/ 275Gbps

(2 Amphenol Transceivers)

Total:

152 High Speed GTs

28
(20 GTH/8 GTY)

56

(32 GTH/24 GTY)

76

(44 GTH/32 GTY)

104

(52 GTH/52 GTY)

120

(60 GTH/60 GTY)

128

(0 GTH/128 GTY)

Total Block RAM






34.6 Mb

34.6 Mb

34.6 Mb

115.2 Mb

132.9 Mb

94.5 Mb

UltraRam, HBM






36 Mb, None

36 Mb, None

36 Mb, None

None, None

None, None

360 Mb, None

Transceiver Speed

 (GTH, GTY)

> 10 Gbps

> 10 Gbps

> 10 Gbps

> 10 Gbps

> 10 Gbps

GTH 16.3 Gb/s

GTY 16.3 Gb/s

Transceivers

GTH 16.3 Gb/s

GTY 32.75 Gb/s

Transceivers

GTH 16.3 Gb/s

GTY 32.75 Gb/s

Transceivers

GTH 16.3 Gb/s

GTY 30.5 Gb/s

Transceivers

GTH 16.3 Gb/s

GTY 30.5 Gb/s

Transceivers

GTY 32.75 Gb/s

Transceivers

Size

The PCB width is (preferably) 65 mm (2.56’’)





35 x 35 mm

40 x 40 mm

42.5 x 42.5 mm

47.5x47.5 mm

52.5 x 52.5 mm

52.5 x 52.5 mm

Cost






5-9 k$

 6-10k$

6-10 k$

40 k$

50-70 k$

60-110 k$

Comments






The number of GTs in this FPGA does not fit any of the cameras we are targetting

This is fine for the 2x2 Systems.

For the larger systems we need more than 3 FPGAs

This is fine for the 2x2 Systems.

This is fine for the SparkPix-S 4x4

This is fine for the 2x2 Systems.

This is fine for the 2x2 Systems (assuming we can fit the real estate).

This is fine for the 2x2 Systems.(assuming we can fit the real estate)

*Done considering 1% Occupancy instead of maxing out the transceivers


Summarizing Table



UHR 2x2SparkPix S 2x2SparkPix S 4x4UHR 5x6UHR 6x6

                              Requirements

Characteristics 

48 GTs48 GTs152 GTs312 GTs360 GTs

KU15P (-A1156) Kintex U+

28 GTs    / 352 mm2       / 10k$
KU15P (-E1517) Kintex U+56 GTs    / 402 mm2      / 10k$
KU15P (-A1760) Kintex U+76 GTs    / 42.52 mm/ 10k$✅ (2 FPGA)
XCVU160 (-C2104) Virtex U104 GTs / 47.52 mm/ 40k$✅ (2 FPGA)✅ (1 FPGA/module)
XCVU190 (-A2577) Virtex U120 GTs / 47.52 mm/ 70k$✅(2 FPGA)✅ (1 FPGA/module)✅ (1 FPGA/module)
VU13P (-A2577) Virtex U+128 GTs / 52.52 mm2 / 110k$✅(2 FPGA)✅ (1 FPGA/module)✅ (1 FPGA/module)


       

ePixUHR 140k 2x2 Detector System


SparkPix S – 500k 2 x 2 ASIC Detector System



System level

RequirementParameters

Power supply24V consistent with the HR detector

Mechanical size

We would like to match the ePixHRM board dimensions to reuse cooling

Side entrance detector

  • Existing 75x175mmx58:
  • max envelope would be (100x175x75mm)


Digital board2.56x5.265"

Power and communication2.56x5.240"

Carrier

2.56x1.95


Can we do it smaller?

What is the minimum amount of components that need to leave in this board












System Power consumption Breakdown

Domain

Portion

Final Voltages


LDOs




DC/DC


DC/DC












ANALOG











ASIC

G_AS_0

1.3V @4.4A

← +1.3V

LT1764 x2 (LDO)

Max 6A (= 3A x2)

← +1.8V (TBD)

TPSM5D1806 (DC/DC)

PMIC

4.5-V to 15-V input

Dual 6A output

(85%  efficiency for max load at Vout = 1.8V)

← +6 V




LT8648S x2

42V, 15A Synchronous Step-Down Silent Switcher 2

Max Current = 15*2 = 30A

(Around 93% efficiency for 24 to 6V at max load)

← +24 V



The current drawn by the 0.6V current sink should not be counted twice since its sourced by the G_AS.

The power drawn by the ASIC analog part is 1.3V*4.4A*4= 23W.

If using 1.8V as the LDO input, we are burning also (1.8-1.3)V*4.4A*4 = 9W.

The power drawn by the rest of analog voltages should be less than 2W.


So the power that the DC/DC converters have to provide is around 23 + 9 + 2 = 34W.

Considering the efficiency curves of the DC/DC converters:

34/85%/93% =

43W Total Analog Power

G_AS_1

1.3V @4.4A

← +1.3V

LT1764 x2 (LDO)

Max 6A (= 3A x2)

← +1.8V (TBD)

G_AS_2

1.3V @4.4A

← +1.3V

LT1764 x2 (LDO)

Max 6A (= 3A x2)

← +1.8V (TBD)

TPSM5D1806 (DC/DC)

PMIC

4.5-V to 15-V input

Dual 6A output

(85%  efficiency for max load at Vout = 1.8V)

← +6 V

G_AS_3

1.3V @4.4A

← +1.3V

LT1764 x2 (LDO)

Max 6A (= 3A x2)

← +1.8V (TBD)

G_VG_0

0.6V @ -2.75A

← +0.6V

LT3091 x2 (LDO)

Max 3.0A (= 1.5A x2)





← +2.5V






LT3086 (LDO)

Max 2.1A





← +3V


TPSM5D1806 (DC/DC)

PMIC

4.5-V to 15-V input

Dual 6A output

(>90%  efficiency for this loads)


← +6 V

G_VG_1

0.6V @ -2.75A

← +0.6V

LT3091 x2 (LDO)

Max 3.0A (= 1.5A x2)

G_VG_2

0.6V @ -2.75A

← +0.6V

LT3091 x2 (LDO)

Max 3.0A (= 1.5A x2)

← +6 V


G_VG_3

0.6V @ -2.75A

← +0.6V

LT3091 x2 (LDO)

Max 3.0A (= 1.5A x2)

G_AS_2V5

2.5V @ <0.5 A

← +2.5V












DIGITAL








ASIC

G_DS_0

1.3V @3A

← +1.3V

LT3086 x2 (LDO)

Max 4.2A (= 2.1A x2)

← +1.8V (TBD)

TPSM5D1806 (DC/DC)

PMIC

4.5-V to 15-V input

Dual 6A output

(85%  efficiency for max load at Vout = 1.8V)

← +6 V






LT8648S x2

42V, 15A Synchronous Step-Down Silent Switcher 2

Max Current = 15*2 = 30A

(Around 93% efficiency for 24 to 6V at max load)











← +24 V



For the digital consumption of the ASIC we do not have precise numbers regarding the new CML logic.

Let's assume a double consumption w.r.t the LVDS design.

1.3V*6A = 8W

LDO losses = 0.5*6A = 3W

11W / 85% / 93% = 14W(ASIC Digital)


Regarding the FPGA considering a worst case efficiency of the DC/DC:
17.1W /85%/93% = 21.5W (FPGA)


Worst case scenario, the remaining electronics will draw 1A, multiplied by 5.5V = 5.5W, which before the DCDC will become 5.5W /85 = 7W

42.5W Total Digital Power










G_DS_X

1.3V @???A (CML simulations?)

← +1.3V

LT3086 x2 (LDO)

Max 4.2A (= 2.1A x2)

← +1.8V (TBD)

G_IO_0

1.3V @???A(CML simulations?)

← +1.3V

LT3086 x2 (LDO)

Max 4.2A (= 2.1A x2)

← +1.8V (TBD)

TPSM5D1806 (DC/DC)

PMIC

4.5-V to 15-V input

Dual 6A output

(85%  efficiency for max load at Vout = 1.8V)

← +6 V



G_IO_X

1.3V @???A(CML simulations?)

← +1.3V

LT3086 x2 (LDO)

Max 4.2A (= 2.1A x2)

← +1.8V (TBD)






FPGA

VCCINT

0.85V @7.05 A

← +0.85V



LMZ31530
DC/DC Buck converter

30 A

(Around 90% efficiency)

← +6 V

VCCAUX + VCC_1.8V +VCCADC + MGTVCCAUX+ MGTYVCCAUX

1.8V @0.7A 

← +1.8V



TPSM5D1806 (DC/DC)

PMIC

4.5-V to 15-V input

Dual 6A output

(85%  efficiency for max load at Vout = 1.8V)

← +6 V


MGTAVCC +MGTYAVCC

0.9V @3.7A

← +0.9V



VCC_1.2V + MGTAVTT + MGTYAVTT 

1.2V @5.5A

← +1.2V



TPSM5D1806 (DC/DC)

PMIC

4.5-V to 15-V input

Dual 6A output

(Between 80 and 90 efficiency)






← +6 V




DAC/ADC/Misc

VDD_5V

+5V @ <1A

← 5V

LT3086 (LDO)

Max 2.1A




← +5.5V (TBD)



VDD_3V3

+3.3V @ <1A

← +3.3V

LT3086 (LDO)

Max 2.1A

VDD_1V8

+1.8V @ <1A

← +1.8V

LT3086 (LDO)

Max 2.1A










85.5W Total Power (Estimation without CML transceivers)

Component

Product number

Quantity

Output Voltage

Max Current

Comment

DC/DC Step Down converterLT8648S4//15 A
DC/DC PMICTPSM5D180670.5 V to 5.5 V Dual 6 A / Single 12 A 
DC/DC Buck converterLMZ3153010.6 V to 3.6 V30 ANot in stock, replace with TPSM846C24? Other option is TPS53355 that is the IC used inside of LMZ31530.
Low Noise LDOLT176481.21V to 20V3 ALow Output Noise: 40µVRMS (10Hz to 100kHz)
Low Noise LDOLT308612 0.4V to 32V2.1ALow Output Noise: 40µVRMS (10Hz to 100kHz)
Negative Linear RegulatorLT30918–1.5V to –36V-1.5 ALow Output Noise: 18µVRMS (10Hz to 100kHz)

ePixUHR Signals (single ASIC)

N# Pins


Power Digital Signals

N# Pins


Digital Core Signals

N# Pins


P&CB Signals

N# Pins

Waveform/ ASIC Ctrl

5


LDO enables

7


Env. Monitors

7


Misce

24

Clk

2 (0 if also clk_matrix is sent via GT)


DCDC Syncs

2


Bias DAC

4


Spare

6

Slow Ctrl (SACI/Sugoi)

4





HS DAC

4




Digital Monitor

2





HS ADC

6+24+8 =38










Miscellan

5










Jitter Cleaner

12




Total

13


Total

9


Total

70


Total

30


TOTAL = 13 * 4(n.Asics) + 9 + 70 + 30 = 161 out of 96 HD, 416 HP

Component

Product number

Operation Voltage

Power consumption

N# I/O needed

Needs substitution?

Quad SPI Configuration Memory

MT25QU01GBBB8E12

1.8 V

Max 50 mA

4

No, we can use HR pins

JTAG


1.8/1.5/1.2 V


4

No, we can either use HR or go to 1.2V

Analog Monitor (SlowADC) ADC

ADS1217

AVDD =3V, DVDD =1.8V

< 1 mA

7

Maybe. The datasheet guarantees operation for digital down to 2.7V,  in HR250 was put at 1.8. Check if it is fine!

Analog Monitor MUX (x5)

MAX4734

AVDD =3V

< 1 uA

None

They are controlled by the ADC

Humidity sensor

HIH_5031_001

3 V


None

No

Thermistor

NTC_NHQM103B375T10



None

No

Oscillators

•371 MHz XLL726371.428571I

•156 MHz 536FB156M250DG

•48 MHz CX3225SB48000D0FPJC1

2.5 V



Both 1.8 V and 2.5V solutions can be found depending on the voltage we want to use

Clock Fanout

SI53340-B-GM

2.5 / 1.8V



Now is 2.5, probably can be switch to 1.8, but since its AC-coupled should not matter. Check if we can remove the 2.5 LDO

Clock Jitter cleaner

SI5345_64QFN

VDD = 3.3V, DVDD =1.8V


12 + n. clks


Programmable Oscillator

LMK61E2

3.3 V



Used?


High Speed ADC

AD9249

1.8 V

Max 58mW/channel:

58*12 = 700mW

38

No

ADC_MON_VCM Buffer

AD8607_MSO8

1.8V




Bias DAC (HV Ring)

MAX5443 (DAC) +

MAX14611 (Level Shifter) +

REF192GS  (Voltage reference)

3.0 V (VCCA)


4

Maybe? Will the sensors have an HV ring?

ASIC clk fanout

SI53340-B-GM




Probably not needed

HS DAC (Vcalib_p)

MAX5719A(DAC)+

MAX14611 (Level Shifter) +

OP213 (Buffer)

MAX6126A41+(Vref)

5V



Why was this chosen? Do we need the 5 V supply?

Level Shifter for Power controllers

MAX3378EETD (x2)

MAX3373E_SOT23_8 (x1)

1.8V -> 3.3V




Serial number

DS2411R

1.8V

















OLD Graph:

For single ended → check the electrical specification


Real Estate: Connectors


System level accounting

FunctionalityIO typeQuantityswitching specification
ASIC control (GR, ...)2.5V SE
Static
SUGOI


SACI






DATACLM?40 + spares?10Gbps




System IO


transceiver

25Gbps

supporting electronics




enablels for power


Slow ADC (current and voltage monitors, temperature sensors...)


HS ADC


serial number




HS DAC














Lower priority needs (R&D on system)


FPGA to FPGA interconnection

requires GT+specific connector








Goal is to have a decision on the FPGA package and family.

Kintex Ultrascale+ vs Virtex?


Transceiver

Ideal is to reuse the 300Gbps Leap On transceiver from Amphenol, unless we find a replacement that operates with single mode power supply.


Board material 

Needs to be FR408HR or better


System level simulation 

GT to the ASICs

GT to the transceivers

Power drops


Connectors

FunctionalityIO typeQuantityObservations
carrier to digital board
1Can we use smaller connectors since the number of data IOs per ASIC reduces from 24 to 10?
Digital to Power and communication
1
Power communication to external power supply
1


Notes:

  • FPGA intercommunication
  • co-design with the data reduction pipeline
  • DFX for streaming pre-processing and eventually microAI, reusable building blocks
  • How are we going to prevent ePixHRM carriers to be connected in to the 100kfps digital board and vice-versa?
    • Options could be mechanical pins or change connector polarities
    • Or via serial ID (needs to have a database) via soft locks

Board design

General questions

  • Common SACI (ASIC slow control) interface for the "old" carrier boards with separate select signals
    • Still use common or split up into one SACI per ASIC?
    • Other common signals: CLK_EN, GRST, ACQ, RO, SRO, SYNC
  • Why was Amphenol LEAP chosen instead of e.g. Samtec FireFly?

Altium missing components

The components listed in the expansion box below are currently missing from the SLAC Altium library located on OneDrive (Altium_Yee_lib).

Components marked with (green star) are available from the Altium Manufacturer Part Search catalog with symbol and footprint

DC/DC

  • LT1764 (green star)
  • LT3091 (green star)
  • LT3086 (green star)
  • LT8648S (green star)
  • TPSM5D1806
  • LMZ31530 (green star)

Connectors:

  • 30-pin
    • SEAF-30-06.5-L-06-2-A-K
    • SEAM-30-11.0-L-06-2-A-K
  • 50-pin
    • SEAF8-50-05.0-S-10-3-FR
    • SEAM8-50-S05.0-S-10-3-FR
  • (question) Why L plating on the 30-pin S plating on the 50-pin?
  • (question) Which one?
    • TFM-111-02-L-DH (non-standard)
    • TFM-112-02-L-DH (non-standard)
    • TFM-113-02-L-DH (non-standard)
    • TFM-115-02-L-DH

FPGA:

  • (XCKU15P-2FFVA1156E used earlier in PC_261_101_25_C00)
  • (question) VE or VA?
  • (question) Speed-grade 1 or 2?
  • XCKU15P-1FFVE1760E
  • XCKU15P-1FFVA1760E
  • XCKU15P-2FFVE1760E
  • XCKU15P-2FFVA1760E

Thermistor, humidity:

  • NHQM103B375T10
  • HIH-5031-001 (green star)

AD/DA:

  • ADS1217 (green star)
    • (question) Use another one?
  • MAX4734
  • AD8607 (green star)
  • MAX14611
  • REF192GS (green star)
  • MAX5719A
  • OP213 (green star)
  • MAX6126A41

ID:

  • DS2411R (green star)

Optical:

  • 10140369-101LF

Memory:

  • MT25QU01GBBB8E12

Oscillator/clock:

  • XLL726371.428571I
  • 536FB156M250DG
  • CX3225SB48000D0FPJC1
  • SI53340-B-GM
  • SI5345_64QFN
  • LMK61E2

Level-shifters:

  • MAX3378EETD



  • No labels