Requirement | ePixUHR | SparkPix-S | SparkPix-ED |
---|---|---|---|
frame rate | 100kfps | 1Mfps | 1Mfps |
Power supplies | 2.5V Analog 1.3V (AS/DS/IO) | 2.5V Analog 1.3V (AS/DS/IO) 0.6V (Current sink!) | 1.3V (AS/DS/IO) |
Power for each supply | ePixUHR - 35 kHz | SparkPix-S: supply/ground and power consumption | t.b.d. |
Number of GT IOs per ASIC | 8 (outputs) | 8 (outputs) 1 clock in | t.b.d (The current agreement is to have 8 outputs) |
Expected I/O speed | 5.25 Gb/s | 5.25 Gb/s | 10 Gb/s |
Total data bandwidth | 42 Gbit/s | 42 Gbit/s | 80 Gbit/s |
Parameter (estimated) | Small Camera ePixHR/UHR – 140k 2 x 2 ASIC | Super tile ePixHR/UHR – 1.1M 6 x 6 ASIC | Super tile ePixHR/UHR – 1M 6 x 5 ASIC | Small Camera SparkPix S – 500k 2 x 2 ASIC | Quad Camera SparkPix S – 2M 4 x 4 ASIC |
Pixels | 129,024 px (168 *192*4) | 1,161,216 px (168 *192*36) | 967,680 (168 *192*30) | 540,672 px (352*384*4) | 2,162,688 px (352*384*16) |
Rate | 35kHz / 100kHz | 35kHz / 100kHz | 35kHz / 100kHz | 1MHz | 1MHz |
Focal Plane Area | 4cm x 4cm | 12cm x 12cm | 12cm x 10cm | 4cm x 4cm | 8cm x 8cm |
Front side footprint (window) | 5cm x 5cm | 14cm x 14cm | 14cm x 12cm | 5cm x 5cm | 10cm x 10cm |
Power (only ASIC) | 0.016 kW/??? | 0.144 kW/??? | 0.130 kW/??? | 0.021kW | 0.084 kW |
Weight | 1.5kg | 10kg | 9Kg | 1.5kg | 6kg |
Data volume | 56 Gbps/ 160 Gbps | 504 Gbps/ 1440 Gbps | 420 Gbps/ 1190 Gbps | 160 Gbps | 640 Gbps |
ASIC Power | Analog Section | Digital Section | 0.6V Sink | Analog TPS | ||||
ePixUHR 140k 2x2 Detector | SparkPix-S 500k 2x2 Detector | ePixUHR 140k 2x2 Detector | SparkPix-S 500k 2x2 Detector | ePixUHR 140k 2x2 Detector | SparkPix-S 500k 2x2 Detector | ePixUHR 140k 2x2 Detector | SparkPix-S 500k 2x2 Detector | |
Voltage | 1.3 V | 1.3V | 1.3V | 1.3V | ??? Maybe | 0.6 V | 2.5 V | 2.5V |
Required current | 10A (= 2.5 A* 4 ASIC) | 13.4 A (= 3.35A * 4 ASIC) | - With LVDS transceivers ???? | - With LVDS transceivers ???? | ??? (If existing lower or equal than SparkPixS) | -8 A | 0.4 A (=0.1 * 4) | 0.4 A (=0.1 * 4) |
System Requirement | +1.3 V @ +17.5 A (+30% current safety margin) | +1.3 V @ +3 A (+30% current safety margin) [waiting for the CML number] | +0.6 V @ -11 A (+30% current safety margin) | +2.5 V @ +0.5 A (+30% current safety margin) |
ePixUHR 140k 2x2 Detector Specs | ePixUHR 1.1M 6x6 Detector Specs | ePixUHR 1M 6x5 Detector Specs | SparkPix-S 500k 2x2 Detector Specs | SparkPix-S 2M 4x4 Detector Specs | KU15P (-A1156) Kintex Ultrascale+ FPGA USED IN ePixHR250M | KU15P (-E1517) Kintex Ultrascale+ | KU15P (-A1760) Kintex Ultrascale+ | XCVU160 (-C2104) Virtex Ultrascale | XCVU190 (-A2577) Virtex Ultrascale | VU13P (-A2577) Virtex Ultrascale+ | |
General IO (HD, HP) | 48 HD, 486 HP | 96 HD, 416 HP | 96 HD, 416 HP | 52 HD, 364 HP | 0 HD, 448 HP | 0 HD, 448 HP | |||||
High Speed GTs (GTH/GTY) | - ASIC data: 32 = 8 lanes * 4 ASIC - Spare outputs : 4 - PGP communication: 12 = 12* 160 Gbps/ 275Gbps (1 Amphenol Transceiver) Total: 48 High Speed GTs | - ASIC data: 288 = 8 lanes * 36 ASIC - Spare outputs : 0 - PGP communication: 72 = 12* 1.44 Tbps/ 275Gbps (6 Amphenol Transceivers) Total: 360 High Speed GTs | - ASIC data: 240 = 8 lanes * 30 ASIC - Spare outputs : 0 - PGP communication: 72 = 12 lanes * 1.19 Tbps/ 275Gbps (6 Amphenol Transceivers) Suggested 3 transceivers 1.4x compression in the detector Total: 312 High Speed GTs (If considering 5x2 Modules, 104 GTs each) | - ASIC data: 32 = 8 lanes * 4 ASIC - Spare outputs : 4 - PGP communication: 12 = 12* 160 Gbps/ 275Gbps (1 Amphenol Transceivers) Total: 48 High Speed GTs | - ASIC data: 128 = 8 lanes * 16 ASIC - Spare outputs : 0 - PGP communication: 24* = 12* 495 Gbps/ 275Gbps (2 Amphenol Transceivers) Total: 152 High Speed GTs | 28 | 56 (32 GTH/24 GTY) | 76 (44 GTH/32 GTY) | 104 (52 GTH/52 GTY) | 120 (60 GTH/60 GTY) | 128 (0 GTH/128 GTY) |
Total Block RAM | 34.6 Mb | 34.6 Mb | 34.6 Mb | 115.2 Mb | 132.9 Mb | 94.5 Mb | |||||
UltraRam, HBM | 36 Mb, None | 36 Mb, None | 36 Mb, None | None, None | None, None | 360 Mb, None | |||||
Transceiver Speed (GTH, GTY) | > 10 Gbps | > 10 Gbps | > 10 Gbps | > 10 Gbps | > 10 Gbps | GTH 16.3 Gb/s GTY 16.3 Gb/s Transceivers | GTH 16.3 Gb/s GTY 32.75 Gb/s Transceivers | GTH 16.3 Gb/s GTY 32.75 Gb/s Transceivers | GTH 16.3 Gb/s GTY 30.5 Gb/s Transceivers | GTH 16.3 Gb/s GTY 30.5 Gb/s Transceivers | GTY 32.75 Gb/s Transceivers |
Size | The PCB width is (preferably) 65 mm (2.56’’) | 35 x 35 mm | 40 x 40 mm | 42.5 x 42.5 mm | 47.5x47.5 mm | 52.5 x 52.5 mm | 52.5 x 52.5 mm | ||||
Cost | 5-9 k$ | 6-10k$ | 6-10 k$ | 40 k$ | 50-70 k$ | 60-110 k$ | |||||
Comments | The number of GTs in this FPGA does not fit any of the cameras we are targetting | This is fine for the 2x2 Systems. For the larger systems we need more than 3 FPGAs | This is fine for the 2x2 Systems. This is fine for the SparkPix-S 4x4 | This is fine for the 2x2 Systems. | This is fine for the 2x2 Systems (assuming we can fit the real estate). | This is fine for the 2x2 Systems.(assuming we can fit the real estate) |
*Done considering 1% Occupancy instead of maxing out the transceivers
UHR 2x2 | SparkPix S 2x2 | SparkPix S 4x4 | UHR 5x6 | UHR 6x6 | ||
---|---|---|---|---|---|---|
Requirements Characteristics | 48 GTs | 48 GTs | 152 GTs | 312 GTs | 360 GTs | |
KU15P (-A1156) Kintex U+ | 28 GTs / 352 mm2 / 10k$ | ❌ | ❌ | ❌ | ❌ | ❌ |
KU15P (-E1517) Kintex U+ | 56 GTs / 402 mm2 / 10k$ | ✅ | ✅ | ❌ | ❌ | ❌ |
KU15P (-A1760) Kintex U+ | 76 GTs / 42.52 mm2 / 10k$ | ✅ | ✅ | ✅ (2 FPGA) | ❌ | ❌ |
XCVU160 (-C2104) Virtex U | 104 GTs / 47.52 mm2 / 40k$ | ✅ | ✅ | ✅ (2 FPGA) | ✅ (1 FPGA/module) | ❌ |
XCVU190 (-A2577) Virtex U | 120 GTs / 47.52 mm2 / 70k$ | ✅ | ✅ | ✅(2 FPGA) | ✅ (1 FPGA/module) | ✅ (1 FPGA/module) |
VU13P (-A2577) Virtex U+ | 128 GTs / 52.52 mm2 / 110k$ | ✅ | ✅ | ✅(2 FPGA) | ✅ (1 FPGA/module) | ✅ (1 FPGA/module) |
Requirement | Parameters | ||
---|---|---|---|
Power supply | 24V consistent with the HR detector | ||
Mechanical size | We would like to match the ePixHRM board dimensions to reuse cooling Side entrance detector
| ||
Digital board | 2.56x5.265" | ||
Power and communication | 2.56x5.240" | ||
Carrier | 2.56x1.95 | Can we do it smaller? What is the minimum amount of components that need to leave in this board | |
Domain | Portion | Final Voltages | LDOs | DC/DC | DC/DC | ||||||
ANALOG | ASIC | G_AS_0 1.3V @4.4A | ← +1.3V | LT1764 x2 (LDO) Max 6A (= 3A x2) | ← +1.8V (TBD) | TPSM5D1806 (DC/DC) PMIC 4.5-V to 15-V input Dual 6A output (85% efficiency for max load at Vout = 1.8V) | ← +6 V | LT8648S x2 42V, 15A Synchronous Step-Down Silent Switcher 2 Max Current = 15*2 = 30A (Around 93% efficiency for 24 to 6V at max load) | ← +24 V The current drawn by the 0.6V current sink should not be counted twice since its sourced by the G_AS. The power drawn by the ASIC analog part is 1.3V*4.4A*4= 23W. If using 1.8V as the LDO input, we are burning also (1.8-1.3)V*4.4A*4 = 9W. The power drawn by the rest of analog voltages should be less than 2W. So the power that the DC/DC converters have to provide is around 23 + 9 + 2 = 34W. Considering the efficiency curves of the DC/DC converters: 34/85%/93% = 43W Total Analog Power | ||
G_AS_1 1.3V @4.4A | ← +1.3V | LT1764 x2 (LDO) Max 6A (= 3A x2) | ← +1.8V (TBD) | ||||||||
G_AS_2 1.3V @4.4A | ← +1.3V | LT1764 x2 (LDO) Max 6A (= 3A x2) | ← +1.8V (TBD) | TPSM5D1806 (DC/DC) PMIC 4.5-V to 15-V input Dual 6A output (85% efficiency for max load at Vout = 1.8V) | ← +6 V | ||||||
G_AS_3 1.3V @4.4A | ← +1.3V | LT1764 x2 (LDO) Max 6A (= 3A x2) | ← +1.8V (TBD) | ||||||||
G_VG_0 0.6V @ -2.75A | ← +0.6V | LT3091 x2 (LDO) Max 3.0A (= 1.5A x2) | ← +2.5V | LT3086 (LDO) Max 2.1A | ← +3V | TPSM5D1806 (DC/DC) PMIC 4.5-V to 15-V input Dual 6A output (>90% efficiency for this loads) | ← +6 V | ||||
G_VG_1 0.6V @ -2.75A | ← +0.6V | LT3091 x2 (LDO) Max 3.0A (= 1.5A x2) | |||||||||
G_VG_2 0.6V @ -2.75A | ← +0.6V | LT3091 x2 (LDO) Max 3.0A (= 1.5A x2) | ← +6 V | ||||||||
G_VG_3 0.6V @ -2.75A | ← +0.6V | LT3091 x2 (LDO) Max 3.0A (= 1.5A x2) | |||||||||
G_AS_2V5 2.5V @ <0.5 A | ← +2.5V | ||||||||||
DIGITAL | ASIC | G_DS_0 1.3V @3A | ← +1.3V | LT3086 x2 (LDO) Max 4.2A (= 2.1A x2) | ← +1.8V (TBD) | TPSM5D1806 (DC/DC) PMIC 4.5-V to 15-V input Dual 6A output (85% efficiency for max load at Vout = 1.8V) | ← +6 V | LT8648S x2 42V, 15A Synchronous Step-Down Silent Switcher 2 Max Current = 15*2 = 30A (Around 93% efficiency for 24 to 6V at max load) | ← +24 V For the digital consumption of the ASIC we do not have precise numbers regarding the new CML logic. Let's assume a double consumption w.r.t the LVDS design. 1.3V*6A = 8W LDO losses = 0.5*6A = 3W 11W / 85% / 93% = 14W(ASIC Digital) Regarding the FPGA considering a worst case efficiency of the DC/DC: Worst case scenario, the remaining electronics will draw 1A, multiplied by 5.5V = 5.5W, which before the DCDC will become 5.5W /85 = 7W 42.5W Total Digital Power | ||
G_DS_X 1.3V @???A (CML simulations?) | ← +1.3V | LT3086 x2 (LDO) Max 4.2A (= 2.1A x2) | ← +1.8V (TBD) | ||||||||
G_IO_0 1.3V @???A(CML simulations?) | ← +1.3V | LT3086 x2 (LDO) Max 4.2A (= 2.1A x2) | ← +1.8V (TBD) | TPSM5D1806 (DC/DC) PMIC 4.5-V to 15-V input Dual 6A output (85% efficiency for max load at Vout = 1.8V) | ← +6 V | ||||||
G_IO_X 1.3V @???A(CML simulations?) | ← +1.3V | LT3086 x2 (LDO) Max 4.2A (= 2.1A x2) | ← +1.8V (TBD) | ||||||||
FPGA | VCCINT 0.85V @7.05 A | ← +0.85V | LMZ31530 30 A (Around 90% efficiency) | ← +6 V | |||||||
VCCAUX + VCC_1.8V +VCCADC + MGTVCCAUX+ MGTYVCCAUX 1.8V @0.7A | ← +1.8V | TPSM5D1806 (DC/DC) PMIC 4.5-V to 15-V input Dual 6A output (85% efficiency for max load at Vout = 1.8V) | ← +6 V | ||||||||
MGTAVCC +MGTYAVCC 0.9V @3.7A | ← +0.9V | ||||||||||
VCC_1.2V + MGTAVTT + MGTYAVTT 1.2V @5.5A | ← +1.2V | TPSM5D1806 (DC/DC) PMIC 4.5-V to 15-V input Dual 6A output (Between 80 and 90 efficiency) | ← +6 V | ||||||||
DAC/ADC/Misc | VDD_5V +5V @ <1A | ← 5V | LT3086 (LDO) Max 2.1A | ← +5.5V (TBD) | |||||||
VDD_3V3 +3.3V @ <1A | ← +3.3V | LT3086 (LDO) Max 2.1A | |||||||||
VDD_1V8 +1.8V @ <1A | ← +1.8V | LT3086 (LDO) Max 2.1A | |||||||||
85.5W Total Power (Estimation without CML transceivers) |
Component | Product number | Quantity | Output Voltage | Max Current | Comment |
DC/DC Step Down converter | LT8648S | 4 | // | 15 A | |
DC/DC PMIC | TPSM5D1806 | 7 | 0.5 V to 5.5 V | Dual 6 A / Single 12 A | |
DC/DC Buck converter | LMZ31530 | 1 | 0.6 V to 3.6 V | 30 A | |
Low Noise LDO | LT1764 | 8 | 1.21V to 20V | 3 A | Low Output Noise: 40µVRMS (10Hz to 100kHz) |
Low Noise LDO | LT3086 | 12 | 0.4V to 32V | 2.1A | Low Output Noise: 40µVRMS (10Hz to 100kHz) |
Negative Linear Regulator | LT3091 | 8 | –1.5V to –36V | -1.5 A | Low Output Noise: 18µVRMS (10Hz to 100kHz) |
Functionality | IO type | Quantity | switching specification |
---|---|---|---|
ASIC control (GR, ...) | 2.5V SE | Static | |
SUGOI | |||
SACI | |||
DATA | CLM? | 40 + spares? | 10Gbps |
System IO | |||
transceiver | 25Gbps | ||
supporting electronics | |||
enablels for power | |||
Slow ADC (current and voltage monitors, temperature sensors...) | |||
HS ADC | |||
serial number | |||
HS DAC | |||
Lower priority needs (R&D on system) | |||
FPGA to FPGA interconnection | requires GT+specific connector | ||
Goal is to have a decision on the FPGA package and family.
Kintex Ultrascale+ vs Virtex?
Ideal is to reuse the 300Gbps Leap On transceiver from Amphenol, unless we find a replacement that operates with single mode power supply.
Needs to be FR408HR or better
GT to the ASICs
GT to the transceivers
Power drops
Functionality | IO type | Quantity | Observations |
---|---|---|---|
carrier to digital board | 1 | Can we use smaller connectors since the number of data IOs per ASIC reduces from 24 to 10? | |
Digital to Power and communication | 1 | ||
Power communication to external power supply | 1 |
Notes:
The components listed in the expansion box below are currently missing from the SLAC Altium library located on OneDrive (Altium_Yee_lib).