Contents
2014-01-22 Meeting minutes
Hi everyone,
Here is a short summary of what I heard today for how we should start
with the pnCCD.
For pnCCD algorithms:
common-mode, pedestals, hot-pixels, quadrant rotations, hit-finders,
support in mikhail's calibManager
For pnCCD online displays: (using matplotlib for now)
shot by shot raw data
shot by shot calibrated data
projections of the above
region-of-interest
strip-charts of interesting quantities
(also display calibration values like noise-map,pedestal-map)
After this we will work on the acqiris as well (acqiris
constant-fraction algos already exist in psana).
Attached below is a 12 line python program that plots a real pnCCD
image and an x-projection (amoc0113 also has pnccd data we can look
at). You can run it on a psana node by saving it to pnccd.py and
doing "sit_setup" and then "ipython pnccd.py". This sort of code
should work online too (although we may have to change matplotlib
settings) as well as with calibrated images.
Display group (dan, mikhail, me) meets Thursday at 10:30. Analysis
group (sebastian, ankush(?), phil, mikhail, me) meets Friday at 1.
See you then...
chris
Script form Chris
Use interactive psana framework ~cpo/ipsana/shm.py
:
from psana import * events = DataSource('shmem=1_1_XCS.0').events() src = Source('DetInfo(XcsBeamline.1:Tm6740.5)') import matplotlib.pyplot as plt plt.ion() fig = plt.figure('pulnix') ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # x0, y0, h, w for i in range(100): evt = events.next() frame = evt.get(Camera.FrameV1, src) ax.cla() ax.imshow(frame.data16()) fig.canvas.draw()
Walking and talking about unlimited pipeline (processing)
CASS Heritage
Online monitor
Data for tests
On 2014-01-27 Sebastian Carron kindly provide us with data files for pnCCD experiment amoa1214:
- Dark Run: 169, rear sensors gain 1/64, front 1/1, Imaging mode exp=amoa1214:run=169
- Run With Hits: 170 Low hit rate though, so you will have to use a hit finder of sorts exp=amoa1214:run=170
Calibration of pnCCD
New modules for "old-style" calibration:
- pdscalibdata/include/PnccdBaseV1.h - baseclass for pnCCD parameters, defines Segs, Rows, Cols, Size
- pdscalibdata/include/PnccdPedestalsV1.h - loads pedestals from file, returns ndarray of pedestals
- pdscalibdata/include/PnccdCommonModeV1.h - the same for common mode
- pdscalibdata/include/PnccdPixelGainV1.h - the same for pixel gain
- pdscalibdata/include/PnccdPixelStatusV1.h - the same for pixel status
- PSCalib::PnccdCalibPars - wrapper for all pnCCD types
Interface
Example can be found in PSCalib/test/ex_calib_file_finder.cpp:
// Assume that file is located in /reg/d/psdm/AMO/amotut13/calib/PNCCD::CalibV1/Camp.0:pnCCD.1/pedestals/1-end.data const std::string calibDir = "/reg/d/psdm/AMO/amotut13/calib"; const std::string groupName = "PNCCD::CalibV1"; const std::string source = "Camp.0:pnCCD.1"; unsigned long runNumber = 10; unsigned print_bits = 255; PSCalib::PnccdCalibPars *calibpars = new PSCalib::PnccdCalibPars(calibDir, groupName, source, runNumber, print_bits); calibpars->printCalibPars(); calibpars->printCalibParsStatus(); calibpars->printInputPars(); ndarray<pdscalibdata::PnccdPedestalsV1::pars_t, 3> peds = calibpars -> pedestals(); ndarray<pdscalibdata::PnccdCommonModeV1::pars_t, 1> cmod = calibpars -> common_mode(); ndarray<pdscalibdata::PnccdPixelStatusV1::pars_t, 3> stat = calibpars -> pixel_status(); ndarray<pdscalibdata::PnccdPixelGainV1::pars_t, 3> gain = calibpars -> pixel_gain();
Pros
- Simple format for calibration files - just a text file with pre-defined number of values for each type:
973.941639 881.189675 1050.211 773.263749 899.241302 981.805836 1150.72615 993.084175 1121.15488 1029.76319 1220.14927 903.278339 1097.49944 1066.94949 1263.71044 1053.53872 1194.35915 935.320988 1317 ...
Cons
- Too simple calibration file format, does not allow any metadata or comments.
- Detector-dependent objects and parameters "knows" about parameters' array type and shape:
- PSCalib::PnccdCalibPars which depends on PnccdPedestalsV1, PnccdCommonModeV1, ..., PnccdBaseV1
pdscalibdata::PnccdPedestalsV1::pars_t = float
pdscalibdata::PnccdCommonModeV1::pars_t = uint16_t
pdscalibdata::PnccdPixelStatusV1::pars_t = uint16_t
pdscalibdata::PnccdPixelGainV1::pars_t = float
- const std::string groupName = "PNCCD::CalibV1"; - do we really need it ?
How to improve interface for "new-style" calibration
We need to define calibration array shape, type of parameters, and where to find them under calib directory: groupName="PNCCD::CalibV1", source="Camp.0:pnCCD.1";
- Use universal calibration object (for all detectors!):
PSCalib::CalibPars *calibpars = new PSCalib::CalibPars(calibDir, source, runNumber, print_bits);
wheresource d
efines the detector type - Use universal (for all detectors!) modules for each calibration type:
pdscalibdata/include/DetPedestalsV1.h - loads pedestals from file, returns ndarray of pedestals
pdscalibdata/include/DetCommonModeV1.h - the same for common mode
pdscalibdata/include/DetPixelGainV1.h - the same for pixel gain
pdscalibdata/include/DetPixelStatusV1.h - the same for pixel status - Use universally (for all detectors!) pre-defined types of parameters :
pdscalibdata::DetPedestalsV1::pars_t = float
pdscalibdata::DetCommonModeV1::pars_t = uint16_t
pdscalibdata::DetPixelStatusV1::pars_t = uint16_t
pdscalibdata::DetPixelGainV1::pars_t = float
- Define the groupName="PNCCD::CalibV1" from dictionary for source="Camp.0:pnCCD.1" - this means that we will never change the groupName !
Save/retrieve ndarray type/shape from file header, for example:
# RULES: # Lines starting with # in the beginning of the file are considered as comments or pseudo-comments for metadata # Lines without # with space-separated values are used for input of parameters # Empty lines are ignored # Optional fields: # TITLE: This is a file with pedestals # DATE_TIME: 2014-01-30 10:21:23 # AUTHOR: someone # EXPERIMENT: amotut13 # DETECTOR: Camp.0:pnCCD.1 # CALIB_TYPE: pedestals # Mandatory fields to define the ndarray<TYPE,NDIMS> and its shape as unsigned shape[NDIMS] = {DIM1,DIM2,DIM3} # TYPE: float # NDIMS: 3 # DIM1: 4 # DIM2: 255 # DIM3: 255 973.941639 881.189675 1050.211 773.263749 899.241302 981.805836 1150.72615 993.084175 1121.15488 1029.76319 1220.14927 903.278339 1097.49944 1066.94949 1263.71044 1053.53872 1194.35915 935.320988 1317 ...
psana modules for pnCCD
New module ImgAlgos.PnccdNDArrProducer
- Get from the event store
Psana::PNCCD::FullFrameV1
, - Put in the event store
ndarray<T,3>, where shape=[4][512][512], T=uint16_t, int, float, double, int16_t
Performance: ~13 ms/event
Modified module ImgAlgos.PnccdImageProducer
- Get from the event store
Psana::PNCCD::FullFrameV1
orndarray<T,3>
forsource
andkey
parameters - Put in the event store
ndarray<T,2>, where shape=[1024+gap][1024], T= input type
Performance: ~30 ms/event (copy involves inverse iteration for 180 degree rotation of two bottom frames)
Old sequence
ImgAlgos.PnccdImageProducer - get Psana::PNCCD::FullFrameV1, put ndarray<uint16_t, 2>
ImgAlgos.NDArrAverage - averages ndarray<T, 2>, save in file
New sequence
ImgAlgos.PnccdNDArrProducer - get Psana::PNCCD::FullFrameV1, put ndarray<T, 2>
ImgAlgos.PnccdImageProducer - get ndarray<T,3>, put ndarray<T, 2>
ImgAlgos.NDArrAverage - averages ndarray<T, 2>, save in file
References