Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Here's a reminder of the contents of the CGRO/OSSE Daily Standard Plots

See "page 4" of the Daily Standard Plots here.

See "page 5" of the Daily Standard Plots here.

From: grove@ssd5.nrl.navy.mil
Subject: Some GRO daily monitoring plots
Date: 3 November 2006 7:15:22 PM EST
To: echarles@slac.stanford.edu, borgland@slac.stanford.edu
Cc: eduardo@slac.stanford.edu

...

Here's a teaser of the OSSE on-orbit daily standard plots, sent to you without enough explanation. We made a series of plots in the production data processing for every single day of the 9-year mission as part of the data integrity and instrument health monitoring process. Both plots are for day 91/271, i.e. the 271st day of 1991, the entire day. On "page 4" you're seeing count rates in energy bands from detector 4 of 4. On "page 5" you're seeing count rates in ancillary particle detectors. At the top of both pages is a context timeline, with geomagnetic rigidity, marks for SAA times, GRB messages from BATSE (the equivalent of GBM, from the same guys at Marshall), marks for the "primary" and "secondary" sources in each orbit (OSSE viewed two targets per orbit, nominally on complementary sides of the Earth).

Look at page 5.

The SAA appears on page 5 in the CPMPR and CPMEL (Charge Particle Monitor Proton and Electron detector) time series. See that 6 of the 16 orbits each day have a significant SAA passage, with 2 relatively modest SAA passes. Note that they are marked also by the bold bars in the Rigidity time series. BTW, the CPM was a small plastic scintillator (3/4" diameter, 3/4" long) turned on at all times.

Note from the CPD$R* plots (the Charge Particle Detectors 1 through 4) that the orbital particle rate modulation is bigger on non-SAA orbits than on SAA orbits, i.e. the particles that aren't trapped in the belts (i.e. aren't in the SAA) are more strongly modulated on those orbits that don't pass through the SAA. This is an interesting consequence of a 28 deg orbit from an Eastward launch. BTW, the CPD was a plastic scintillator paddle, about 24" in diameter, over the aperture of each OSSE spectroscopy detector (4 spec detectors, so 4 plastic CPDs) used in the trigger logic as an active veto.

Note that by chance (ok, by design) I chose a day with a minor problem with the SAA boundary. See the sharp spikes in the "CPD" rates near 20 hrs. Comparing the times of those spikes with the heavy black lines in the "RIGID" plot (the heavy lines are ground-defined duration of the SAA pases) it's apparent that the Eastern edge of SAA needed to be extended a bit – i.e. the rates were still high at the end of the SAA pass.

Look at page 4.

Here you see the same Rigidity panel, plus a bunch of other rates associated with OSSE spectroscopy detector #4.

...