Page History
...
Content
Table of Contents |
---|
2014-01-22 Meeting minutes
...
pnCCD overview
Large area pnCCD DAQ and Elictronics, Lothar Struder & Robert Hartmann
Data for tests
On 2014-01-27 Sebastian Carron kindly provide us with data files for pnCCD experiment amoa1214:
- Dark Run: 169, rear sensors gain 1/64, front 1/1, Imaging mode exp=amoa1214:run=169
- Run With Hits: 170 Low hit rate though, so you will have to use a hit finder of sorts exp=amoa1214:run=170
Psana modules for pnCCD
Module ImgAlgos.PnccdNDArrProducer
- Get from the event store
Psana::PNCCD::FramesV1
, - Put in the event store
ndarray<
const
T,3>, where shape=[4][512][512], T=uint16_t, int, float, double, int16_t
Performance: ~13 ms/event
Modified module ImgAlgos.PnccdImageProducer
- Get from the event store
Psana::PNCCD::FullFrameV1
orndarray<const T,3>
orndarray<
const
T,3>
forsource
andkey
parameters - Put in the event store
ndarray<
const
T,2>, where shape=[1024+gap][1024], T= input type
Performance: ~30 ms/event (copy involves inverse iteration for 180 degree rotation of two bottom frames)
Sequence of modules for raw image averaging
- ImgAlgos.PnccdImageProducer - get Psana::PNCCD::FullFrameV1, put ndarray<
const
uint16_t, 2> - ImgAlgos.NDArrAverage - averages ndarray<
const
T, 2>, save in file
Sequence of modules for calibrated image or ndarray averaging
- ImgAlgos.PnccdNDArrProducer - get Psana::PNCCD::
FramesV1
, put ndarray<const
T, 3> - ImgAlgos.NDArrCalib - getinput (raw) ndarray<
const
T, Ndim>, put calibrated ndarray<const
T, Ndim> - ImgAlgos.PnccdImageProducer - get ndarray<
const
T,3>, put ndarray<const
T, 2> - ImgAlgos.NDArrAverage - averages ndarray<
const
T, 2> or ndarray<const
T,3>, save in file
Common mode correction in pnCCD ndarray
pnCCD image has intensity "strips" in both dimensions;
[4][512][512] array for single event and averaged over 1000 events:
At large number of events common mode should be averaged out. For 1000 events horizontal intensity "stripes" have gone.
This proves that common mode should be evaluated for horizontal stripes.
Due to specifics of pnCCD DAQ readout, it is recommended to evaluate common mode for consecutive groups of 128 pixel in the [4][512][512] array
.
Data corrections in module ImgAlgos.NDArrCalib
Module description: Module ImgAlgos::NDArrCalib
List of parameters in configuration file
Module ImgAlgos::NDArrCalib is controlled by the list of parameters in the configuration file for psana, for example:
Code Block |
---|
[ImgAlgos.NDArrCalib]
source = DetInfo(Camp.0:pnCCD.0)
key_in = pnccd-ndarr
key_out = calibrated
do_peds = yes
do_cmod = no
do_stat = no
do_mask = no
do_bkgd = no
do_gain = no
do_nrms = no
do_thre = yes
fname_bkgd =
fname_mask =
masked_value = 0
threshold_nrms = 0
threshold = 100.0
below_thre_value = 50
bkgd_ind_min = 0
bkgd_ind_max = 1000
bkgd_ind_inc = 2
print_bits = 11 |
2014-02-10 Test of the module ImgAlgos.NDArrCalib
Dark run: exp=amoa1214:run=7, all plots are shown for Camp.0:pnCCD.0
event 5
pedestals
and pixel_rms
are generated by the calibman for arrays of shape=[4,512,512] using the same run.
Raw data
All do_* = no
- that means no correction is applied
Pedestals
do_peds = yes
file with pedestals is loaded automatically from
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/pedestals/1-end.data
Common mode
do_peds = yes
do_cmod = yes
files with pedestals and common_mode are loaded automatically from
chris
Script form Chris
Use interactive psana framework ~cpo/ipsana/shm.py
:
Code Block |
---|
from psana import *
events = DataSource('shmem=1_1_XCS.0').events()
src = Source('DetInfo(XcsBeamline.1:Tm6740.5)')
import matplotlib.pyplot as plt
plt.ion()
fig = plt.figure('pulnix')
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # x0, y0, h, w
for i in range(100):
evt = events.next()
frame = evt.get(Camera.FrameV1, src)
ax.cla()
ax.imshow(frame.data16())
fig.canvas.draw()
|
Walking and talking about unlimited pipeline (processing)
CASS Heritage
Online monitor
Data for tests
On 2014-01-27 Sebastian Carron kindly provide us with data files for pnCCD experiment amoa1214:
- Dark Run: 169, rear sensors gain 1/64, front 1/1, Imaging mode exp=amoa1214:run=169
- Run With Hits: 170 Low hit rate though, so you will have to use a hit finder of sorts exp=amoa1214:run=170
Calibration of pnCCD
New modules for "old-style" calibration:
- pdscalibdata/include/PnccdBaseV1.h - baseclass for pnCCD parameters, defines Segs, Rows, Cols, Size
- pdscalibdata/include/PnccdPedestalsV1.h - loads pedestals from file, returns ndarray of pedestals
- pdscalibdata/include/PnccdCommonModeV1.h - the same for common mode
- pdscalibdata/include/PnccdPixelGainV1.h - the same for pixel gain
- pdscalibdata/include/PnccdPixelRmsV1.h - the same for pixel rms
- pdscalibdata/include/PnccdPixelStatusV1.h - the same for pixel status
- PSCalib::PnccdCalibPars - wrapper for all pnCCD types
Detector-dependent interface
Example can be found in PSCalib/test/ex_calib_file_finder.cpp:
...
/reg/d/psdm/AMO/
...
amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.
...
0/
pedestals
/1-end.data
...
/reg/d/psdm/AMO/
...
amoa1214/calib
...
/PNCCD::CalibV1
...
/
...
Camp.0:pnCCD.
...
0/common_mode/1-end.data
where common mode parameters were set preliminary as:
echo "1 300 50 256 0.2" > /reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/common_mode/1-end.data
Average over each consecutive group of 256 pixels
Common mode subtraction improves the width of intensity distribution.
Pixel status
do_stat = yes
masked_value=0
Calibration type: pixel_status (0-good, 1,2,4,...-bad)
File with pixel status mask was produced in Calibration Manager ROI Mask application
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/
pixel_status
/7-7.data
Set bad pixels (1) in the half of frame[1]:
Mask
Region of interest (ROI) mask can be generated by the Mask Editor.
do_mask = yes
fname_mask = pnccd-test-mask.txt
masked_value=0
Background
do_bkgd = yes
fname_bkgd = pnccd-test-mask.txt
For this test the file with pedestals is used:
Gain
do_gain = yes
file with gain factors is loaded automatically from
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/pixel_gain/7-7.data
Fot this test all gains for [4,512,512] pixels were set to 0.5
N*RMS Threshold
do_nrms = yes
below_thre_value = 0
threshold_nrms = 0.5
file with rms values is loaded automatically from
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/pixel_rms/1-end.data
Common Threshold
do_thre = yes
below_thre_value = 0
threshold = 100
Test for amob33314 run 167
Evaluate parameters in Calibration Manager
for types
- pedestals
- pixel_status for rms threshold = 15 ADU
- pixel_rms
Camp.0.pnCCD.0
Camp.0.pnCCD.1
Raw data average and rms
Pedestals subtracted average and rms
Pedestals and common mode subtracted average and rms
echo "1 50 10 128 0.2" > /reg/d/psdm/AMO/amob3313/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/common_mode/167-167.data
Support of pnCCD in Calibration Manager
In dark run processing in Calibration Manager produces pedestals
and pixel_rms
. Then, if thresholds on rms and averaged intensity are set correctly, the pixel_status
can be also produced and deployed under the calib
directory. Calibration manager works with arrays of shape=[4,512,512]. Embedded ROI Mask Editor can be used to generate the ROI mask for pnCCD.
Get latest version of calibman
Run Calibration Manager from current release (for release version ≥ ana-0.10.12):
Code Block |
---|
ssh -Y psana
cd <your-favorite-NON-RELEASE-directory>
sit_setup
calibman |
If CalibManager or other packages were recently updated and these updates are wanted to be used:
Code Block |
---|
ssh -Y psana
cd <your-favorite-directory>
newrel ana-current <release-directory>
cd <release-directory>
sit_setup
addpkg CalibManager HEAD;
addpkg <package-name-2> HEAD;
addpkg <package-name-3> HEAD;
...
scons;
calibman |
Image of pnCCD
pnCCD image can be reconstructed from data by two methods using
Examples of the first method are available in psana - Module Examples
Second method is available since release ana-0.13.14 (package PSCalib V00-02-40).
It allows to reconstruct image using generic Detector Geometry technique with geometry
file. Current version of pnCCD has a solid structure without moving parts, hence the main part of the geometry file is unchanged. Example of the geometry file for pnCCD can be found in /reg/g/psdm/detector/alignment/pnccd/amo-pnccd.1-2015-01-23/calib
/PNCCD::CalibV1/Camp.0:pnCCD.1/geometry/0-end.data, which essential part is
Code Block |
---|
# HDR PARENT IND OBJECT IND X0[um] Y0[um] Z0[um] ROT-Z ROT-Y ROT-X TILT-Z TILT-Y TILT-X
DETPNCCD:V1 0 PNCCD:V1 0 0 0 0 0 0 0 0.0 0.0 0.0
DETPNCCD:V1 0 PNCCD:V1 1 76725 38325 0 180 0 0 0.0 0.0 0.0
DETPNCCD:V1 0 PNCCD:V1 2 76725 77925 0 180 0 0 0.0 0.0 0.0
DETPNCCD:V1 0 PNCCD:V1 3 0 39600 0 0 0 0 0.0 0.0 0.0
#IP:V1 0 DETPNCCD:V1 0 38400 39000 10000 -90 0 0 0.0 0.0 0.0 |
The last commented line in this file can be un-commented in order to rotate and translate detector relative to IP.
Note |
---|
|
Example of the configuration file psana-amoa1214-r0108-pnccd-NDArrImageProducer.cfg
Code Block |
---|
[psana]
# psana -m EventKeys -n 3 exp=amoa1214:run=108
#calib-dir = /reg/d/psdm/AMO/amoa1214/calib
files = exp=amoa1214:run=108
events = 10
modules = ImgAlgos.PnccdNDArrProducer \
ImgAlgos.NDArrCalib \
ImgAlgos.NDArrImageProducer \
ImgAlgos.NDArrAverage:nda \
ImgAlgos.NDArrAverage:img-geo \
ImgAlgos.Tahometer
[ImgAlgos.PnccdNDArrProducer]
source = DetInfo(Camp.0:pnCCD.1)
key_in =
key_out = pnccd-ndarr
outtype = asdata
print_bits = 0
|
Pros
- Simple format for calibration files - just a text file with pre-defined number of values for each type:
Code Block |
---|
973.941639 881.189675 1050.211 773.263749 899.241302 981.805836 1150.72615 993.084175 1121.15488 1029.76319 1220.14927 903.278339 1097.49944 1066.94949 1263.71044 1053.53872 1194.35915 935.320988 1317 ... |
Cons
- Too simple calibration file format, does not allow any metadata or comments.
- Detector-dependent objects and parameters "knows" about parameters' array type and shape:
- PSCalib::PnccdCalibPars which depends on PnccdPedestalsV1, PnccdCommonModeV1, ..., PnccdBaseV1
pdscalibdata::PnccdPedestalsV1::pars_t = float
pdscalibdata::PnccdCommonModeV1::pars_t = uint16_t
pdscalibdata::PnccdPixelStatusV1::pars_t = uint16_t
pdscalibdata::PnccdPixelGainV1::pars_t = float
- const std::string groupName = "PNCCD::CalibV1"; - do we really need it ?
Detector-independent interface
- Interface is declared in the abstract base class PSCalib::CalibPars
- Access to all detector-dependent classes is hidden in the static factory class PSCalib::CalibParsStore
Note |
---|
Factory is implemented for pnCCD only. CSPAD and CSPAD2x2 will be added soon. |
Code Block |
---|
#include "PSCalib/CalibPars.h"
#include "PSCalib/CalibParsStore.h"
// Instatiation
//Here we assume that code is working inside psana module where evt and env variables are defined through input parameters of call-back methods.
//Code below instateates calibpars object using factory static method PSCalib::CalibParsStore::Create:
std::string calib_dir = env.calibDir(); // or "/reg/d/psdm/<INS>/<experiment>/calib"
std::string group = std::string(); // or something like "PNCCD::CalibV1";
const std::string source = "Camp.0:pnCCD.1";
const std::string key = ""; // key for raw data
Pds::Src src; env.get(source, key, &src);
PSCalib::CalibPars* calibpars = PSCalib::CalibParsStore::Create(calib_dir, group, src, PSCalib::getRunNumber(evt));
// Access methods
calibpars->printCalibPars();
const PSCalib::CalibPars::pedestals_t* peds_data = calibpars->pedestals();
const PSCalib::CalibPars::pixel_gain_t* gain_data = calibpars->pixel_gain();
const PSCalib::CalibPars::pixel_rms_t* rms_data = calibpars->pixel_rms();
const PSCalib::CalibPars::pixel_status_t* stat_data = calibpars->pixel_status();
const PSCalib::CalibPars::common_mode_t* cmod_data = calibpars->common_mode(); |
New approach to calibration files with header
In order to get rid of detector dependent types of calibration parameters we need to add metadata in the calibration file. All metadata can be listed in the header of the calibration files, for example, using keyward mapping (dictionary):
Code Block |
---|
# RULES:
# Lines starting with # in the beginning of the file are considered as comments or pseudo-comments for metadata
# Lines without # with space-separated values are used for input of parameters
# Empty lines are ignored
# Optional fields:
# TITLE: This is a file with pedestals
# DATE_TIME: 2014-01-30 10:21:23
# AUTHOR: someone
# EXPERIMENT: amotut13
# DETECTOR: Camp.0:pnCCD.1
# CALIB_TYPE: pedestals
# Mandatory fields to define the ndarray<TYPE,NDIMS> and its shape as unsigned shape[NDIMS] = {DIM1,DIM2,DIM3}
# TYPE: float
# NDIMS: 3
# DIM1: 4
# DIM2: 255
# DIM3: 255
973.941639 881.189675 1050.211 773.263749 899.241302 981.805836 1150.72615 993.084175 1121.15488 1029.76319 1220.14927 903.278339 1097.49944 1066.94949 1263.71044 1053.53872 1194.35915 935.320988 1317 ... |
psana modules for pnCCD
New module ImgAlgos.PnccdNDArrProducer
- Get from the event store
Psana::PNCCD::FramesV1
, - Put in the event store
ndarray<T,3>, where shape=[4][512][512], T=uint16_t, int, float, double, int16_t
Performance: ~13 ms/event
Modified module ImgAlgos.PnccdImageProducer
- Get from the event store
Psana::PNCCD::FullFrameV1
orndarray<T,3>
forsource
andkey
parameters - Put in the event store
ndarray<T,2>, where shape=[1024+gap][1024], T= input type
Performance: ~30 ms/event (copy involves inverse iteration for 180 degree rotation of two bottom frames)
Old sequence of image averaging
ImgAlgos.PnccdImageProducer - get Psana::PNCCD::FullFrameV1, put ndarray<uint16_t, 2>
ImgAlgos.NDArrAverage - averages ndarray<T, 2>, save in file
New sequence of image averaging
Note |
---|
For demonstration only! Just in order to confirm that we produce the same image from different objects. In real case image needs to be produced at the final stage. |
ImgAlgos.PnccdNDArrProducer - get Psana::PNCCD::FramesV1
, put ndarray<T, 3>
ImgAlgos.PnccdImageProducer - get ndarray<T,3>, put ndarray<T, 2>
ImgAlgos.NDArrAverage - averages ndarray<T, 2>, save in file
"Natural order" for common mode correction in pnCCD ndarray
pnCCD image has intensity "strips" in both dimensions;
[4][512][512] array for single event and averaged over 1000 events:
At large number of events common mode should be averaged out. For 1000 events horizontal intensity "stripes" have gone.
This proves that common mode should be evaluated for horizontal stripes.
Data corrections in module ImgAlgos.NDArrCalib
Midule description: Module ImgAlgos::NDArrCalib
List of parameters in configuration file
Code Block |
---|
[ImgAlgos.NDArrCalib] source = DetInfo(Camp.0:pnCCD.01) key_in = pnccd-ndarr key_out = calibrated do_peds = yes do_cmod = no yes do_stat = no yes do_mask = no do_bkgd = no do_gain = no do_nrms = no do_thre = yes fname_bkgd = fname_mask = masked_value_bkgd = 0no thresholddo_nrmsgain = 0 thresholdno do_nrms = 100.0 belowno do_thre_value = 50no bkgd#fname_ind_minmask = 0 bkgd_ind_maxpnccd-test-mask.txt #fname_bkgd = 1000 bkgd_ind_inc = 2 print_bits = 11 |
2014-02-10 Test of the module ImgAlgos.NDArrCalib
Dark run: exp=amoa1214:run=7, all plots are shown for Camp.0:pnCCD.0
event 5
pedestals
and pixel_rms
are generated by the calibman for arrays of shape=[4,512,512] using the same run.
Raw data
All do_* = no
- that means no correction is applied
Pedestals
do_peds = yes
file with pedestals is loaded automatically from
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/pedestals/1-end.data
Common mode
do_peds = yes
do_cmod = yes
files with pedestals and common_mode are loaded automatically from
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/
pedestals
/1-end.data
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/common_mode/1-end.data
where common mode parameters were set preliminary as:
echo "1 300 50 256 0.2" > /reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/common_mode/1-end.data
Average over each consecutive group of 256 pixels
Common mode subtraction improves the width of intensity distribution.
Pixel status
do_stat = yes
masked_value=0
Calibration type: pixel_status (0-good, 1,2,4,...-bad)
File with pixel status mask was produced in Calibration Manager ROI Mask application
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/
pixel_status
/7-7.data
Set bad pixels (1) in the half of frame[1]:
Mask
do_mask = yes
fname_mask = pnccd-test-mask.txt
masked_value=0
Background
do_bkgd = yes
fname_bkgd = pnccd-test-mask.txt
For this test the file with pedestals is used:
Gain
do_gain = yes
file with gain factors is loaded automatically from
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/pixel_gain/7-7.data
Fot this test all gains for [4,512,512] pixels were set to 0.5
N*RMS Threshold
do_nrms = yes
below_thre_value = 0
threshold_nrms = 0.5
file with rms values is loaded automatically from
/reg/d/psdm/AMO/amoa1214/calib/PNCCD::CalibV1/Camp.0:pnCCD.0/pixel_rms/1-end.data
Common Threshold
do_thre = yes
below_thre_value = 0
threshold = 100
Support of pnCCD in Calibration Manager
In dark run processing in Calibration Manager produces pedestals
and pixel_rms
. Then, if thresholds on rms and averaged intensity are set correctly, the pixel_status
can be also produced and deployed under the calib
directory. Calibration manager works with arrays of shape=[4,512,512]. Embedded ROI Mask Editor can be used to generate the ROI mask for pnCCD.
Get latest version of packages for psana and calibman
Code Block |
---|
ssh -Y psana
cd <your-favorite-directory>
newrel ana-current <release-directory>
cd <release-directory>
sit_setup
addpkg ImgAlgos HEAD;
addpkg pdscalibdata HEAD;
addpkg PSCalib HEAD;
addpkg CalibManager HEAD;
scons; |
References
pnccd-test-bkgd.txt
masked_value = 0
threshold_nrms = 4.0
threshold = 100
below_thre_value = 0
bkgd_ind_min = 10000
bkgd_ind_max = 10200
bkgd_ind_inc = 1
print_bits = 1
[ImgAlgos.NDArrAverage:nda]
source = DetInfo(Camp.0:pnCCD.1)
key = calibrated
avefile = pnccd-nda-ave
rmsfile = pnccd-nda-rms
#maskfile = pnccd-nda-msk
#hotpixfile = pnccd-nda-hot
thr_rms_ADU = 0
thr_min_ADU = 2
thr_max_ADU = 65000
print_bits = 29
[ImgAlgos.NDArrImageProducer]
#calibdir = ./calib
calibdir = /reg/g/psdm/detector/alignment/pnccd/amo-pnccd.1-2015-01-23/calib
source = DetInfo(Camp.0:pnCCD.1)
key_in = calibrated
key_out = pnccd-img-geo
print_bits = 1
[ImgAlgos.NDArrAverage:img-geo]
source = DetInfo(Camp.0:pnCCD.1)
key = pnccd-img-geo
avefile = pnccd-img-geo-ave
rmsfile = pnccd-img-geo-rms
#maskfile = pnccd-img-geo-msk
#hotpixfile = pnccd-img-geo-hot
thr_rms_ADU = 0
thr_min_ADU = 2
thr_max_ADU = 65000
print_bits = 29
[ImgAlgos.Tahometer]
dn = 100
print_bits = 7 |
uses psana modules
- ImgAlgos.PnccdNDArrProducer - gets pnCCD data and put it as ndarray in the event store
- ImgAlgos.NDArrCalib - applys calibrations to ndarray
- ImgAlgos.NDArrImageProducer - produces calibrated image
- ImgAlgos.NDArrAverage:nda - averages calibrated ndarray
- ImgAlgos.NDArrAverage:img-geo - averages calibratedimage
This script can be executed by the command
Code Block |
---|
psana -c psana-amoa1214-r0108-pnccd-NDArrImageProducer.cfg |
which saves averaged and RMS files for calibrated ndarray and image, which can be plotted by the command plims <file-name>.
For eample
Code Block |
---|
plims pnccd-nda-ave-amoa1214-r0108.dat
plims pnccd-img-geo-ave-amoa1214-r0108.dat |
plot images with intensity distributions for ndarray and image, respectively:
Masks and other calibration files for pnCCD and image can be generated with calibman
.