Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Code Block
titleCode of calib_jungfrau_v2 with time stamps
collapsetrue
def calib_jungfrau_v2(det, evt, cmpars=(7,3,200,10), **kwa):
    """
    v2 - improving performance, reduce time and memory consumption, use peds-offset constants
    Returns calibrated jungfrau data

    - gets constants
    - gets raw data
    - evaluates (code - pedestal - offset)
    - applys common mode correction if turned on
    - apply gain factor

    Parameters

    - det (psana.Detector) - Detector object
    - evt (psana.Event)    - Event object
    - cmpars (tuple) - common mode parameters
        - cmpars[0] - algorithm # 7-for jungfrau
        - cmpars[1] - control bit-word 1-in rows, 2-in columns
        - cmpars[2] - maximal applied correction
    - **kwa - used here and passed to det.mask_v2 or det.mask_comb
      - nda_raw - if not None, substitutes evt.raw()
      - mbits - DEPRECATED parameter of the det.mask_comb(...)
      - mask - user defined mask passed as optional parameter
    """

    t00 = time()

    src = det.source # - src (psana.Source) - Source object

    nda_raw = kwa.get('nda_raw', None)
    loop_segs = kwa.get('loop_segs', False)
    arr = det.raw(evt) if nda_raw is None else nda_raw # shape:(<npanels>, 512, 1024) dtype:uint16
    if arr is None: return None

    t01 = time()

    detname = string_from_source(det.source)

    t02 = time()

    odc = cache.detcache_for_detname(detname)

    t03 = time()

    first_entry = odc is None
    if first_entry:
       odc = cache.add_detcache(det, evt)
       odc.cmps = det.common_mode(evt) if cmpars is None else cmpars
       odc.mask = det.mask_total(evt, **kwa)

    poff = odc.poff # 4d pedestals + offset shape:(3, 1, 512, 1024) dtype:float32
    gfac = odc.gfac # 4d gain factors evaluated form gains
    mask = odc.mask
    outa = odc.outa
    cmps = odc.cmps

    t04 = time()

    if first_entry:
        logger.info('\n  ====================== det.name: %s' % det.name\
                   +'\n  detname from source: %s' % string_from_source(det.source)\
                   +info_ndarr(arr,  '\n  calib_jungfrau arr ')\
                   +info_ndarr(poff, '\n  calib_jungfrau peds+off')\
                   +info_ndarr(gfac, '\n  calib_jungfrau gfac')\
                   +info_ndarr(mask, '\n  calib_jungfrau mask')\
                   +info_ndarr(outa, '\n  calib_jungfrau outa')\
                   +info_ndarr(cmps, '\n  calib_jungfrau common mode parameters ')
                   +'\n    loop over segments: %s' % loop_segs)

    if loop_segs:
      nsegs = arr.shape[0]
      shseg = arr.shape[-2:] # (512, 1024)
      for i in range(nsegs):
        arr1  = arr[i,:]
        mask1 = mask[i,:]
        gfac1 = gfac[:,i,:,:]
        poff1 = poff[:,i,:,:]
        arr1.shape  = (1,) + shseg
        mask1.shape = (1,) + shseg
        gfac1.shape = (3,1,) + shseg
        poff1.shape = (3,1,) + shseg
        out1, times = calib_jungfrau_single_panel(arr1, gfac1, poff1, mask1, cmps)
        outa[i,:] = out1[0,:]
      return outa

    else:
      resp, times = calib_jungfrau_single_panel(arr, gfac, poff, mask, cmps)

      t17 = time()

      times = (t00, t01, t02, t03, t04) + times + (t17,)
      return resp, np.array(times, dtype=np.float64)


def calib_jungfrau_single_panel(arr, gfac, poff, mask, cmps):
    """ Arrays should have a single panel shape, example for 8-panel detector
    arr:  shape:(8, 512, 1024) size:4194304 dtype:uint16 [2906 2945 2813 2861 3093...]
    poff: shape:(3, 8, 512, 1024) size:12582912 dtype:float32 [2922.283 2938.098 2827.207 2855.296 3080.415...]
    gfac: shape:(3, 8, 512, 1024) size:12582912 dtype:float32 [0.02490437 0.02543429 0.02541406 0.02539831 0.02544083...]
    mask: shape:(8, 512, 1024) size:4194304 dtype:uint8 [1 1 1 1 1...]
    cmps: shape:(16,) size:16 dtype:float64 [  7.   1. 100.   0.   0....]
    """

    t05 = time()

    # Define bool arrays of ranges
    gr0 = arr <  BW1              # 490 us
    gr1 =(arr >= BW1) & (arr<BW2) # 714 us
    gr2 = arr >= BW3              # 400 us

    t06 = time()

    factor = np.select((gr0, gr1, gr2), (gfac[0,:], gfac[1,:], gfac[2,:]), default=1) # 2msec

    t07 = time()

    pedoff = np.select((gr0, gr1, gr2), (poff[0,:], poff[1,:], poff[2,:]), default=0)

    t08 = time()

    # Subtract offset-corrected pedestals
    arrf = np.array(arr & MSK, dtype=np.float32)

    t09 = time()

    arrf -= pedoff

    t10 = time()

    if cmps is not None:
      mode, cormax = int(cmps[1]), cmps[2]
      npixmin = cmps[3] if len(cmps)>3 else 10
      if mode>0:
        #arr1 = store.arr1
        #grhg = np.select((gr0,  gr1), (arr1, arr1), default=0)
        logger.debug(info_ndarr(gr0, 'gain group0'))
        logger.debug(info_ndarr(mask, 'mask'))
        t0_sec_cm = time()

        t11 = time()
        gmask = np.bitwise_and(gr0, mask) if mask is not None else gr0

        t12 = time()

        #sh = (nsegs, 512, 1024)
        hrows = 256 #512/2

        for s in range(arrf.shape[0]):

          t13 = time()

          if mode & 4: # in banks: (512/2,1024/16) = (256,64) pixels # 100 ms
            common_mode_2d_hsplit_nbanks(arrf[s,:hrows,:], mask=gmask[s,:hrows,:], nbanks=16, cormax=cormax, npix_min=npixmin)
            common_mode_2d_hsplit_nbanks(arrf[s,hrows:,:], mask=gmask[s,hrows:,:], nbanks=16, cormax=cormax, npix_min=npixmin)

          t14 = time()

          if mode & 1: # in rows per bank: 1024/16 = 64 pixels # 275 ms
            common_mode_rows_hsplit_nbanks(arrf[s,], mask=gmask[s,], nbanks=16, cormax=cormax, npix_min=npixmin)

          t15 = time()

          if mode & 2: # in cols per bank: 512/2 = 256 pixels  # 290 ms
            common_mode_cols(arrf[s,:hrows,:], mask=gmask[s,:hrows,:], cormax=cormax, npix_min=npixmin)
            common_mode_cols(arrf[s,hrows:,:], mask=gmask[s,hrows:,:], cormax=cormax, npix_min=npixmin)

        logger.debug('TIME: common-mode correction time = %.6f sec' % (time()-t0_sec_cm))

    t16 = time()

    arrf = arrf * factor if mask is None else arrf * factor * mask # gain correction

    return arrf, (t05, t06, t07, t08, t09, t10, t11, t12, t13, t14, t15, t16)


Results

time differences between timestamps are shown in msec, as dt[i] = t[i]-t[i-1]

Code Block
titleTime consumption of the calib_jungfrau_v2 parts
collapsetrue
ana-4.0.59-py3 [dubrovin@sdfmilan204:~/LCLS/con-py3]$ mpirun -n 1 python  Detector/examples/test-scaling-mpi.py 6
execute command: ['Detector/examples/test-scaling-mpi.py', '6']
rank:000 cpu_num:000 size:01
[I] L0398: test-scaling-mpi.py 
  ====================== det.name: CxiDs1.0:Jungfrau.0
  detname from source: CxiDs1.0:Jungfrau.0
  calib_jungfrau arr  shape:(8, 512, 1024) size:4194304 dtype:uint16 [2906 2945 2813 2861 3093...]
  calib_jungfrau peds+off shape:(3, 8, 512, 1024) size:12582912 dtype:float32 [2922.283 2938.098 2827.207 2855.296 3080.415...]
  calib_jungfrau gfac shape:(3, 8, 512, 1024) size:12582912 dtype:float32 [0.02490437 0.02543429 0.02541406 0.02539831 0.02544083...]
  calib_jungfrau mask shape:(8, 512, 1024) size:4194304 dtype:uint8 [1 1 1 1 1...]
  calib_jungfrau outa shape:(8, 512, 1024) size:4194304 dtype:float32 [0. 0. 0. 0. 0....]ndarray from tuple: 
  calib_jungfrau common mode parameters  shape:(4,) size:4 dtype:int64 [  7   7 200  10]
    loop over segments: False
rank:000 cpu_num:000 nevt:0000 time:10.075316
[I] L0607: test-scaling-mpi.py rank:000 job 2-nd evt time:1710175768.956751 saveed in file: figs/mpi-job-2nd-evt-time.txt
rank:000 cpu_num:000 nevt:0010 time:0.578157
rank:000 cpu_num:000 nevt:0020 time:0.541390
rank:000 cpu_num:000 nevt:0030 time:0.518435
rank:000 cpu_num:000 nevt:0040 time:0.575237
rank:000 cpu_num:000 nevt:0050 time:0.577683
rank:000 cpu_num:000 nevt:0060 time:0.580110
rank:000 cpu_num:000 nevt:0070 time:0.579042
rank:000 cpu_num:000 nevt:0080 time:0.577012
rank:000 cpu_num:000 nevt:0090 time:0.577242
rank:000 cpu_num:000 nevt:0100 time:0.575845
[I] L0640: test-scaling-mpi.py Summary for rank:000 job 2-nd evt time:1710175768.956751 time total (sec):64.189028
...
QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-dubrovin'
hostname:sdfmilan204 rank:000 cpu:000 cmt:8p-v6 proc time (sec) mean: 0.5668 +/- 0.0125 rms: 0.0186 +/- 0.0088

plot_figs_v2
fnprefix: figs/fig-mpi-data-8p-v6-sdfmilan204-ncores01 title: sdfmilan204 rank 000 of 001 cpu_num 000
...
000  1709951462.307   0.896   0.019   0.008   0.003   0.001   1.485   5.141   4.795   1.873   1.081   0.389   0.712 552.819  11.156  31.449  35.934   3.994
001  1709951462.963   0.883   0.015   0.003   0.002   0.001   1.478   5.195   4.963   1.878   1.216   0.269   0.686 553.074  11.234  31.461  36.158   3.678
002  1709951463.620   0.736   0.013   0.003   0.001   0.000   1.325   5.175   4.901   1.848   1.186   0.268   0.700 556.101  10.969  31.402  35.841   2.868
003  1709951464.278   0.672   0.014   0.003   0.001   0.001   1.491   5.275   4.833   1.874   1.156   0.271   0.695 555.187  11.171  31.454  36.028   3.687
004  1709951464.935   0.672   0.015   0.003   0.001   0.001   1.407   5.255   4.980   1.860   1.188   0.265   0.681 556.062  11.451  31.451  35.880   4.575
005  1709951465.599   1.828   0.014   0.004   0.001   0.000   2.680   5.197   5.440   3.114   1.231   0.275   1.372 552.135  11.523  31.402  35.908   3.678
006  1709951466.259   0.675   0.016   0.003   0.001   0.001   1.370   5.214   4.860   1.832   1.193   0.278   0.691 552.219  11.224  31.394  36.250   3.223
007  1709951466.914   0.873   0.022   0.008   0.002   0.001   1.367   5.303   5.026   1.864   1.209   0.363   0.718 551.416  11.165  31.385  36.066   4.027
008  1709951467.569   0.842   0.014   0.003   0.001   0.001   1.389   5.209   4.796   1.854   1.119   0.264   0.699 551.404  11.150  31.370  36.021   2.912
009  1709951468.223   0.838   0.014   0.003   0.001   0.001   1.381   5.234   4.893   1.874   1.191   0.264   0.690 554.368  11.403  31.414  35.849   5.744
010  1709951468.886   1.976   0.014   0.003   0.001   0.001   3.203   5.134   5.291   3.050   1.211   0.310   0.857 556.652  11.083  31.411  35.851   2.866
011  1709951469.550   0.858   0.016   0.003   0.001   0.001   1.345   5.208   4.876   1.868   1.172   0.266   0.656 554.571  11.404  31.372  35.806   3.667
012  1709951470.207   0.782   0.015   0.003   0.001   0.000   1.321   5.140   4.890   1.849   1.178   0.276   0.671 552.930  11.304  31.376  35.908   3.159
013  1709951470.863   0.902   0.021   0.009   0.002   0.001   1.363   5.316   5.044   1.849   1.206   0.368   0.675 551.805  11.463  31.375  35.844   3.764
014  1709951471.518   0.880   0.014   0.003   0.001   0.001   1.352   5.144   4.876   1.856   1.161   0.269   0.696 551.738  11.189  31.328  36.213   2.871
015  1709951472.172   0.675   0.015   0.003   0.001   0.001   1.365   5.187   4.965   1.848   1.222   0.276   0.686 554.584  11.385  31.463  35.826   5.604
016  1709951472.835   1.795   0.014   0.003   0.001   0.001   3.175   5.209   5.346   3.035   1.211   0.305   1.116 553.065  11.606  31.393  35.818   2.867
017  1709951473.495   0.679   0.014   0.003   0.001   0.001   1.370   5.263   4.933   1.799   1.271   0.279   0.690 555.862  11.446  31.403  36.174   3.659
018  1709951474.154   0.793   0.013   0.003   0.001   0.000   1.343   5.124   4.980   1.845   1.195   0.269   0.686 553.584  11.318  31.364  35.820   2.865
019  1709951474.810   0.783   0.014   0.004   0.001   0.001   1.342   5.148   4.929   1.868   1.203   0.270   0.695 554.589  11.329  31.414  36.334   3.758
020  1709951475.469   0.759   0.021   0.010   0.002   0.001   1.384   5.295   5.002   1.847   1.193   0.370   0.680 552.323  10.995  31.373  36.190   3.232
021  1709951476.124   0.789   0.014   0.003   0.001   0.001   1.334   5.149   4.863   1.873   1.159   0.262   0.694 551.174  11.586  31.429  36.093   3.683
022  1709951476.778   0.678   0.017   0.003   0.001   0.001   1.357   5.206   4.942   1.861   1.139   0.263   0.607 552.973  11.487  31.450  36.206   2.861
023  1709951477.434   0.829   0.014   0.004   0.001   0.001   1.348   5.168   4.786   1.909   1.113   0.262   0.706 556.439  11.474  31.396  35.960   5.616
024  1709951478.098   1.973   0.014   0.003   0.001   0.001   3.199   5.158   5.316   3.041   1.199   0.301   0.712 552.752  11.263  31.464  35.887   2.860
025  1709951478.758   0.863   0.014   0.003   0.001   0.001   1.356   5.180   4.890   1.876   1.167   0.269   0.661 554.007  11.324  31.501  35.965   3.695
026  1709951479.415   0.732   0.014   0.004   0.001   0.001   1.335   5.185   4.794   1.839   1.143   0.273   0.693 556.165  11.355  31.592  35.691   2.909
027  1709951480.073   0.819   0.014   0.003   0.001   0.001   1.350   5.151   4.818   1.882   1.267   0.249   0.675 554.184  11.207  31.441  37.435   3.780
028  1709951480.732   0.796   0.021   0.009   0.002   0.001   1.341   5.367   5.031   1.855   1.180   0.367   0.683 552.998  11.480  31.440  36.413   3.181
029  1709951481.389   0.770   0.014   0.003   0.001   0.001   1.347   5.169   4.633   1.886   1.028   0.263   0.737 551.741  11.409  31.451  36.130   3.669
030  1709951482.044   0.798   0.014   0.002   0.001   0.001   1.347   5.197   4.551   1.838   0.988   0.286   0.742 552.585  11.286  31.398  36.214   2.938
031  1709951482.705   0.780   0.013   0.003   0.001   0.001   1.319   5.225   4.844   1.896   1.138   0.273   0.686 551.471  11.422  31.405  36.418   3.673
032  1709951483.360   0.744   0.015   0.003   0.001   0.001   1.364   5.174   5.049   1.848   1.197   0.271   0.690 555.717  11.567  31.450  36.004   4.597
033  1709951484.024   1.865   0.014   0.003   0.001   0.001   3.177   5.151   5.408   3.073   1.192   0.302   0.859 551.751  11.420  31.518  36.076   3.935
034  1709951484.684   0.763   0.013   0.003   0.001   0.001   1.366   5.156   4.923   1.836   1.180   0.270   0.654 553.017  11.105  31.419  39.409   2.934
035  1709951485.343   0.744   0.013   0.007   0.001   0.001   1.339   5.207   4.864   1.884   1.127   0.268   0.715 552.273  11.389  31.421  36.091   3.676
036  1709951485.998   0.783   0.015   0.002   0.001   0.000   1.353   5.147   4.905   1.826   1.190   0.268   0.676 553.218  11.577  31.411  36.138   2.858
037  1709951486.654   0.825   0.014   0.003   0.001   0.001   1.353   5.150   4.901   1.883   1.196   0.278   0.677 553.971  11.355  31.408  36.152   3.771
038  1709951487.312   0.751   0.023   0.009   0.002   0.001   1.380   5.332   5.054   1.862   1.162   0.368   0.659 552.360  11.561  31.421  35.896   3.161
039  1709951487.967   0.674   0.013   0.004   0.001   0.000   1.400   5.185   4.996   1.900   1.302   0.254   0.668 551.565  11.267  31.442  36.180   3.667
040  1709951488.622   0.834   0.014   0.003   0.001   0.001   1.353   5.120   4.946   1.814   1.219   0.290   0.681 552.905  11.643  31.436  35.873   2.932
041  1709951489.277   0.678   0.014   0.003   0.001   0.001   1.372   5.282   4.882   1.873   1.193   0.274   0.710 552.397  11.231  31.636  35.957   3.679
042  1709951489.933   0.833   0.014   0.003   0.001   0.001   1.350   5.175   4.920   1.853   1.181   0.268   0.666 556.858  11.618  31.441  36.003   2.847
043  1709951490.593   0.840   0.014   0.003   0.001   0.001   1.358   5.231   4.746   1.896   1.068   0.262   0.703 555.706  11.318  31.440  35.805   5.592
044  1709951491.256   1.952   0.014   0.003   0.002   0.005   3.188   5.193   5.317   3.031   1.187   0.306   0.767 552.667  11.568  31.327  35.856   2.917
045  1709951491.918   0.880   0.014   0.004   0.001   0.001   1.378   5.135   4.664   1.875   1.036   0.266   0.731 551.976  11.368  31.469  36.103   3.685
046  1709951492.573   0.842   0.014   0.003   0.001   0.001   1.362   5.220   4.928   1.821   1.194   0.281   0.673 553.601  11.359  31.435  35.888   2.857
047  1709951493.229   0.771   0.013   0.003   0.001   0.001   1.374   5.173   4.786   1.860   1.136   0.269   0.694 552.346  11.322  31.404  35.964   3.676
048  1709951493.884   0.738   0.015   0.003   0.001   0.001   1.352   5.152   4.954   1.839   1.420   0.273   0.638 552.455  11.343  31.405  35.867   2.919
049  1709951494.539   0.735   0.014   0.003   0.001   0.001   1.350   5.213   4.919   1.858   1.203   0.267   0.684 555.511  11.320  31.425  36.101   3.734
050  1709951495.199   0.792   0.021   0.010   0.002   0.001   1.350   5.295   4.967   1.875   1.159   0.362   0.695 555.633  11.365  31.427  35.871   3.206
051  1709951495.858   0.725   0.014   0.003   0.001   0.001   1.355   5.179   4.966   1.855   1.193   0.267   0.663 552.571  11.290  31.442  36.051   3.706
052  1709951496.513   0.732   0.014   0.003   0.001   0.001   1.351   5.148   4.894   1.835   1.204   0.268   0.691 553.878  11.168  31.355  35.997   2.867
053  1709951497.169   0.884   0.015   0.003   0.001   0.000   1.359   5.130   4.803   1.873   1.126   0.268   0.679 552.045  11.216  31.336  35.805   3.684
054  1709951497.824   0.789   0.014   0.004   0.001   0.001   1.342   5.153   4.969   1.838   1.198   0.277   0.669 552.754  11.168  31.354  35.906   2.863
055  1709951498.479   0.699   0.014   0.003   0.001   0.001   1.379   5.230   4.929   1.879   1.177   0.276   0.626 551.721  11.107  31.259  35.795   3.709
056  1709951499.133   0.754   0.013   0.003   0.001   0.001   1.346   5.166   4.931   1.846   1.201   0.276   0.641 553.559  11.420  31.302  36.263   4.534
057  1709951499.795   1.892   0.014   0.004   0.001   0.001   3.194   5.144   5.213   3.070   1.102   0.313   0.883 552.342  11.358  31.356  35.834   3.947
058  1709951500.455   0.805   0.013   0.003   0.002   0.001   1.321   5.237   4.941   1.871   1.189   0.272   0.689 553.453  11.569  31.407  35.818   2.918
059  1709951501.111   0.843   0.015   0.003   0.001   0.001   1.343   5.250   4.936   1.879   1.151   0.264   0.641 555.424  11.339  32.551  35.822   3.683
060  1709951501.775   0.839   0.013   0.003   0.001   0.001   1.346   5.242   4.981   1.867   1.173   0.274   0.686 553.788  11.635  31.384  35.812   2.853
061  1709951502.432   0.756   0.013   0.003   0.001   0.001   1.360   5.247   4.971   1.871   1.191   0.264   0.652 551.001  11.677  31.382  36.142   3.688
062  1709951503.087   0.831   0.015   0.004   0.001   0.001   1.340   5.271   4.916   1.837   1.315   0.244   0.620 551.165  11.508  31.385  35.914   2.868
063  1709951503.741   0.812   0.015   0.003   0.002   0.000   1.352   5.172   4.941   2.346   1.167   0.271   0.684 553.406  11.084  31.473  35.871   3.790
064  1709951504.398   0.852   0.020   0.010   0.002   0.001   1.330   5.253   4.844   1.855   1.074   0.364   0.710 551.497  11.369  31.465  35.813   3.201
065  1709951505.052   0.858   0.013   0.003   0.001   0.001   1.350   5.165   4.972   1.875   1.328   0.241   0.646 550.681  11.250  31.382  35.781   3.694
066  1709951505.706   0.758   0.015   0.003   0.001   0.001   1.349   5.157   4.908   1.836   1.194   0.274   0.675 551.458  11.241  32.197  36.151   2.866
067  1709951506.361   0.741   0.014   0.004   0.001   0.001   1.340   5.150   4.874   1.872   1.164   0.268   0.691 553.973  11.016  31.438  36.056   3.660
068  1709951507.018   0.807   0.015   0.003   0.001   0.001   1.329   5.279   4.790   1.841   1.065   0.263   0.660 553.581  11.266  31.376  35.834   2.949
069  1709951507.674   0.787   0.014   0.003   0.001   0.000   1.334   5.126   4.892   1.881   1.157   0.268   0.637 554.552  11.103  31.501  36.175   3.676
070  1709951508.331   0.734   0.014   0.003   0.001   0.001   1.357   5.187   4.900   1.847   1.182   0.290   0.680 552.080  11.193  31.472  35.965   2.924
071  1709951508.986   0.918   0.014   0.003   0.001   0.001   1.399   5.111   4.948   1.878   1.180   0.273   0.678 552.339  11.160  31.449  38.325   5.545
072  1709951509.648   1.889   0.016   0.003   0.001   0.001   3.175   5.211   5.360   3.035   1.554   0.392   1.726 552.022  11.255  31.424  36.042   2.904
073  1709951510.309   0.870   0.015   0.003   0.001   0.001   1.353   5.160   4.832   1.892   1.129   0.276   0.626 551.263  11.202  31.387  36.047   3.684
074  1709951510.963   0.827   0.013   0.003   0.001   0.001   1.338   5.287   4.996   1.806   1.233   0.277   0.686 552.124  11.490  31.376  35.786   2.860
075  1709951511.618   0.840   0.014   0.003   0.001   0.001   1.317   5.194   4.713   1.892   1.059   0.266   0.633 556.157  11.050  31.419  35.863   3.686
076  1709951512.276   0.793   0.013   0.002   0.001   0.001   1.337   5.218   4.824   1.847   1.163   0.273   0.627 553.038  11.441  31.399  36.186   2.922
077  1709951512.932   0.860   0.013   0.003   0.002   0.001   1.341   5.239   4.809   1.879   1.132   0.264   0.633 553.340  11.380  31.325  35.777   3.681
078  1709951513.588   0.806   0.013   0.003   0.001   0.001   1.337   5.150   4.858   1.859   1.164   0.271   0.625 552.434  11.174  31.342  35.875   2.861
079  1709951514.242   0.770   0.014   0.003   0.001   0.001   1.328   5.261   4.904   1.884   1.201   0.278   0.675 552.390  11.277  31.314  36.119   3.900
080  1709951514.898   0.819   0.013   0.003   0.001   0.001   1.318   5.177   4.884   1.860   1.179   0.265   0.685 552.436  11.178  31.398  36.157   3.146
081  1709951515.553   0.855   0.020   0.009   0.002   0.001   1.342   5.287   5.025   1.875   1.196   0.365   0.692 551.800  11.389  31.425  36.143   3.788
082  1709951516.208   0.848   0.013   0.003   0.001   0.001   1.342   5.195   4.701   1.853   1.053   0.286   0.722 552.828  11.556  31.430  36.204   2.869
083  1709951516.864   0.887   0.014   0.003   0.001   0.001   1.360   5.119   4.796   1.879   0.997   0.262   0.692 556.199  11.292  31.449  36.011   3.677
084  1709951517.523   0.803   0.013   0.003   0.001   0.001   1.320   5.174   4.836   1.863   1.142   0.268   0.697 554.992  11.651  31.435  36.045   2.867
085  1709951518.180   0.872   0.014   0.003   0.001   0.001   1.356   5.264   4.562   1.873   1.000   0.256   0.732 552.314  11.364  31.386  36.011   3.661
086  1709951518.835   0.752   0.014   0.003   0.001   0.000   1.347   5.221   4.898   1.843   1.160   0.260   0.624 552.631  11.247  31.341  35.831   2.864
087  1709951519.490   0.789   0.013   0.003   0.002   0.000   1.338   5.193   4.737   1.894   1.049   0.262   0.695 552.360  11.667  31.430  36.007   3.717
088  1709951520.145   0.778   0.015   0.003   0.001   0.001   1.374   5.197   4.914   1.870   1.151   0.273   0.693 551.128  11.247  31.365  36.042   2.918
089  1709951520.799   0.780   0.014   0.003   0.001   0.001   1.332   5.203   4.920   1.879   1.057   0.261   0.717 552.486  11.064  31.368  35.817   3.692
090  1709951521.454   0.809   0.014   0.003   0.001   0.001   1.336   5.174   4.876   1.850   1.136   0.291   0.638 552.596  11.177  31.420  35.792   4.503
091  1709951522.114   1.924   0.014   0.003   0.001   0.001   3.204   5.130   5.308   3.101   1.187   0.305   1.203 552.445  15.121  31.392  36.129   3.931
092  1709951522.779   0.776   0.014   0.003   0.001   0.001   1.350   5.167   4.806   1.852   1.130   0.266   0.650 552.923  11.227  31.414  35.848   2.917
093  1709951523.434   0.863   0.015   0.003   0.001   0.001   1.354   5.155   4.900   1.870   1.303   0.237   0.600 553.494  11.353  31.414  35.815   3.677
094  1709951524.090   0.699   0.015   0.003   0.001   0.001   1.344   5.153   4.925   1.835   1.213   0.278   0.668 550.517  11.584  31.425  35.820   2.866
095  1709951524.744   0.896   0.013   0.003   0.002   0.001   1.376   5.210   5.044   1.849   1.206   0.274   0.690 551.603  11.192  31.399  36.161   3.706
096  1709951525.399   0.849   0.013   0.003   0.001   0.001   1.333   5.183   4.539   1.844   0.974   0.251   0.723 552.818  11.143  31.449  35.790   2.860
097  1709951526.054   0.858   0.014   0.003   0.001   0.001   1.331   5.178   4.903   1.882   1.147   0.266   0.648 552.017  11.579  31.375  35.923   3.667
098  1709951526.709   0.861   0.013   0.003   0.001   0.001   1.337   5.155   4.961   1.824   1.199   0.274   0.676 551.453  11.124  31.403  35.890   2.867
099  1709951527.363   0.871   0.015   0.003   0.001   0.001   1.380   5.244   4.905   1.872   1.201   0.279   0.670 551.980  11.592  31.406  36.138   3.706
evt  t00(sec)    ms:  t01     t02     t03     t04     t05     t06     t07     t08     t09     t10     t11     t12     t13     t14     t15     t16     t17
job #1 median:        0.808   0.014   0.003   0.001   0.001   1.352   5.186   4.907   1.868   1.180   0.271   0.686 552.710  11.327  31.412  35.965   3.667
other jobs
job #2 median:        0.820   0.013   0.003   0.001   0.001   1.324   5.312   4.984   1.796   1.146   0.231   0.681 551.307  11.269  31.356  35.863   2.910
job #3 median:        0.773   0.014   0.003   0.001   0.001   1.355   5.325   4.983   1.720   1.158   0.267   0.677 548.701  11.053  31.174  35.818   3.001
job #4 median:        0.664   0.015   0.003   0.002   0.001   1.408   5.339   5.003   1.726   1.194   0.272   0.685 548.775  11.112  31.168  35.857   3.215
job #5 median:        0.804   0.014   0.003   0.001   0.001   1.315   5.293   4.972   1.736   1.153   0.274   0.674 551.204  11.219  31.334  35.955   2.873
Code Block
titlecalib_jungfrau_v2 with loops over segments
collapsetrue
ana-4.0.59-py3 [dubrovin@sdfmilan204:~/LCLS/con-py3]$ mpirun -n 1 python  Detector/examples/test-scaling-mpi.py 7
rank:000 cpu_num:000 size:01
[I] L0398: test-scaling-mpi.py 
  ====================== det.name: CxiDs1.0:Jungfrau.0
  detname from source: CxiDs1.0:Jungfrau.0
  calib_jungfrau arr  shape:(8, 512, 1024) size:4194304 dtype:uint16 [2906 2945 2813 2861 3093...]
  calib_jungfrau peds+off shape:(3, 8, 512, 1024) size:12582912 dtype:float32 [2922.283 2938.098 2827.207 2855.296 3080.415...]
  calib_jungfrau gfac shape:(3, 8, 512, 1024) size:12582912 dtype:float32 [0.02490437 0.02543429 0.02541406 0.02539831 0.02544083...]
  calib_jungfrau mask shape:(8, 512, 1024) size:4194304 dtype:uint8 [1 1 1 1 1...]
  calib_jungfrau outa shape:(8, 512, 1024) size:4194304 dtype:float32 [0. 0. 0. 0. 0....]ndarray from tuple: 
  calib_jungfrau common mode parameters  shape:(4,) size:4 dtype:int64 [  7   7 200  10]
    loop over segments: True
rank:000 cpu_num:000 nevt:0000 time:10.117775
[I] L0604: test-scaling-mpi.py rank:000 job 2-nd evt time:1710176925.177748 saveed in file: figs/mpi-job-2nd-evt-time.txt
rank:000 cpu_num:000 nevt:0010 time:0.586269
rank:000 cpu_num:000 nevt:0020 time:0.581187
rank:000 cpu_num:000 nevt:0030 time:0.579508
rank:000 cpu_num:000 nevt:0040 time:0.566666
rank:000 cpu_num:000 nevt:0050 time:0.580894
rank:000 cpu_num:000 nevt:0060 time:0.580464
rank:000 cpu_num:000 nevt:0070 time:0.579505
rank:000 cpu_num:000 nevt:0080 time:0.582394
rank:000 cpu_num:000 nevt:0090 time:0.579650
rank:000 cpu_num:000 nevt:0100 time:0.580779
[I] L0637: test-scaling-mpi.py Summary for rank:000 job 2-nd evt time:1710176925.177748 time total (sec):65.284561
rank:000 times: shape:(100,) size:100 dtype:float64
...
QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-dubrovin'
hostname:sdfmilan204 rank:000 cpu:000 cmt:8p-v7 proc time (sec) mean: 0.5819 +/- 0.0051 rms: 0.0066 +/- 0.0036

plot_figs_v2
fnprefix: figs/fig-mpi-data-8p-v7-sdfmilan204-ncores01 title: sdfmilan204 rank 000 of 001 cpu_num 000
arrts[msec]: shape:(100, 18) size:1800 dtype:float64
...
000  1710176925.179   0.666   0.017   0.008   0.002 569.880   0.195   0.680   0.623   0.117   0.084   0.127   0.052   0.001  11.087  31.610  36.165   0.397
001  1710176925.835   0.638   0.018   0.003   0.002 571.524   0.194   0.707   0.637   0.119   0.083   0.132   0.054   0.001  11.149  31.636  35.907   0.396
002  1710176926.492   0.639   0.019   0.003   0.002 568.908   0.196   0.649   0.592   0.127   0.094   0.140   0.057   0.001  10.950  31.537  35.854   0.398
003  1710176927.147   0.633   0.019   0.003   0.002 568.563   0.201   0.649   0.601   0.117   0.083   0.130   0.056   0.001  10.769  31.551  36.225   0.401
004  1710176927.801   0.644   0.019   0.003   0.002 574.708   0.356   0.669   0.618   0.119   0.083   0.133   0.140   0.001  11.196  31.468  36.211   0.675
005  1710176928.465   1.722   0.018   0.003   0.001 568.464   0.195   0.674   0.592   0.117   0.083   0.132   0.056   0.001  11.315  31.503  35.888   0.401
006  1710176929.121   0.640   0.018   0.003   0.002 568.027   0.195   0.692   0.658   0.118   0.084   0.128   0.062   0.001  10.968  31.407  36.123   0.394
007  1710176929.775   0.638   0.023   0.012   0.002 569.959   0.192   0.603   0.678   0.118   0.083   0.130   0.056   0.001  10.919  31.392  35.939   0.395
008  1710176930.430   0.640   0.018   0.003   0.002 570.235   0.196   0.625   0.637   0.118   0.083   0.126   0.055   0.001  10.902  31.453  36.084   0.405
009  1710176931.086   0.637   0.018   0.003   0.001 572.507   0.353   0.658   0.603   0.118   0.084   0.133   0.140   0.002  11.013  31.432  37.417   0.677
010  1710176931.749   1.720   0.017   0.003   0.002 569.025   0.193   0.633   0.605   0.117   0.084   0.133   0.057   0.001  10.891  31.381  36.222   0.401
011  1710176932.405   0.635   0.017   0.003   0.001 567.340   0.194   0.634   0.612   0.125   0.083   0.127   0.056   0.001  11.194  31.417  35.845   0.399
012  1710176933.058   0.635   0.017   0.002   0.002 567.859   0.196   0.678   0.635   0.117   0.084   0.126   0.057   0.001  11.080  31.371  36.001   0.394
013  1710176933.712   0.636   0.024   0.013   0.002 566.197   0.194   0.657   0.603   0.117   0.083   0.133   0.058   0.001  11.233  31.371  36.247   0.403
014  1710176934.364   0.643   0.022   0.003   0.002 566.952   0.197   0.664   0.612   0.117   0.083   0.129   0.057   0.001  10.935  31.378  35.875   0.394
015  1710176935.016   0.635   0.018   0.003   0.002 569.362   0.510   0.626   0.861   0.127   0.083   0.154   0.136   0.001  11.003  31.729  36.294   0.671
016  1710176935.676   1.736   0.025   0.004   0.002 570.226   0.195   0.636   0.596   0.118   0.083   0.127   0.062   0.001  11.322  31.442  35.914   0.399
017  1710176936.337   0.637   0.018   0.002   0.002 567.089   0.192   0.650   0.592   0.300   0.083   0.129   0.057   0.001  11.218  31.405  35.914   0.393
018  1710176936.990   0.640   0.017   0.004   0.002 568.821   0.194   0.618   0.598   0.117   0.084   0.125   0.057   0.001  11.068  31.435  36.364   0.397
019  1710176937.645   0.642   0.017   0.003   0.002 567.523   0.196   0.665   0.636   0.119   0.083   0.127   0.057   0.001  11.117  31.384  35.998   0.395
020  1710176938.299   0.638   0.023   0.012   0.002 566.782   0.197   0.680   0.628   0.118   0.084   0.124   0.056   0.001  10.767  31.521  35.868   0.398
021  1710176938.951   0.636   0.018   0.003   0.001 565.609   0.193   0.610   0.607   0.118   0.084   0.126   0.057   0.002  11.339  31.319  36.009   0.394
022  1710176939.602   0.638   0.017   0.003   0.001 567.499   0.209   0.604   0.621   0.117   0.084   0.127   0.057   0.001  11.328  31.393  36.040   0.396
023  1710176940.256   0.635   0.019   0.004   0.002 573.105   0.353   0.679   0.609   0.118   0.091   0.127   0.141   0.001  11.096  31.372  36.344   0.681
024  1710176940.918   1.740   0.016   0.003   0.001 572.266   0.195   0.651   0.597   0.116   0.083   0.133   0.057   0.001  11.027  31.364  36.005   0.396
025  1710176941.577   0.631   0.018   0.003   0.001 567.538   0.192   0.631   0.591   0.125   0.084   0.125   0.057   0.001  11.003  31.337  35.894   0.396
026  1710176942.230   0.636   0.018   0.003   0.002 568.037   0.195   0.621   0.670   0.117   0.083   0.133   0.055   0.001  11.123  31.391  36.233   0.401
027  1710176942.884   0.636   0.018   0.003   0.001 567.989   0.193   0.635   0.677   0.127   0.084   0.126   0.056   0.001  10.962  31.390  35.895   0.398
028  1710176943.538   0.641   0.025   0.012   0.003 566.633   0.196   0.628   0.597   0.118   0.084   0.126   0.056   0.001  11.214  31.428  35.818   0.403
029  1710176944.190   0.635   0.017   0.003   0.002 565.870   0.192   0.648   0.610   0.117   0.089   0.124   0.057   0.001  11.144  31.362  35.860   0.395
030  1710176944.842   0.634   0.017   0.004   0.002 567.096   0.202   0.658   0.613   0.117   0.083   0.123   0.056   0.001  11.078  31.397  35.869   0.394
031  1710176945.494   0.629   0.018   0.003   0.001 566.641   0.195   0.649   0.607   0.118   0.083   0.133   0.057   0.001  11.119  31.346  36.274   0.401
032  1710176946.147   0.638   0.018   0.003   0.001 576.210   0.353   0.639   0.625   0.118   0.083   0.127   0.138   0.001  11.161  31.395  35.792   0.682
033  1710176946.812   1.721   0.018   0.003   0.002 567.965   0.192   0.614   0.622   0.117   0.083   0.131   0.057   0.001  11.197  31.366  35.955   0.394
034  1710176947.467   0.634   0.017   0.003   0.002 567.574   0.195   0.615   0.596   0.117   0.091   0.127   0.055   0.001  10.901  31.393  35.964   0.395
035  1710176948.120   0.635   0.017   0.003   0.001 540.194   0.195   0.662   0.509   0.100   0.070   0.107   0.050   0.001  10.365  28.301  34.414   0.394
036  1710176948.740   0.638   0.018   0.003   0.001 552.474   0.171   0.576   0.513   0.101   0.070   0.107   0.051   0.001  10.327  28.882  32.906   0.363
037  1710176949.372   0.607   0.017   0.003   0.002 547.162   0.194   0.664   0.616   0.118   0.083   0.136   0.065   0.001  10.803  31.229  35.949   0.402
038  1710176950.004   0.650   0.025   0.013   0.002 539.100   0.195   0.609   0.637   0.117   0.084   0.126   0.056   0.001  11.068  31.485  33.966   0.349
039  1710176950.627   0.606   0.016   0.002   0.002 554.036   0.169   0.542   0.518   0.105   0.071   0.120   0.065   0.001  10.410  29.793  32.797   0.351
040  1710176951.261   0.642   0.017   0.003   0.001 554.199   0.195   0.613   0.619   0.118   0.083   0.126   0.056   0.001  11.444  31.373  36.057   0.397
041  1710176951.902   0.631   0.024   0.003   0.002 570.335   0.194   0.641   0.595   0.118   0.083   0.135   0.057   0.001  10.968  31.413  35.979   0.393
042  1710176952.557   0.638   0.016   0.003   0.002 568.253   0.205   0.659   0.617   0.117   0.083   0.125   0.055   0.002  11.354  31.421  36.379   0.403
043  1710176953.212   0.636   0.017   0.003   0.002 570.688   0.349   0.694   0.612   0.127   0.084   0.125   0.137   0.001  10.998  31.364  35.868   0.677
044  1710176953.872   1.725   0.018   0.003   0.002 568.433   0.195   0.644   0.601   0.117   0.084   0.125   0.055   0.001  11.340  31.365  35.909   0.393
045  1710176954.528   0.631   0.018   0.003   0.001 566.346   0.194   0.655   0.607   0.117   0.083   0.128   0.061   0.001  11.143  31.315  35.884   0.393
046  1710176955.179   0.638   0.017   0.003   0.002 566.295   0.196   0.653   0.603   0.118   0.084   0.124   0.056   0.001  11.112  31.403  36.420   0.394
047  1710176955.832   0.632   0.017   0.004   0.002 565.378   0.193   0.613   0.597   0.117   0.088   0.128   0.056   0.001  11.151  31.322  36.042   0.398
048  1710176956.483   0.637   0.017   0.003   0.001 566.095   0.196   0.617   0.639   0.116   0.084   0.125   0.056   0.001  11.119  31.394  35.955   0.397
049  1710176957.135   0.633   0.018   0.003   0.002 567.317   0.193   0.696   0.609   0.118   0.089   0.128   0.057   0.001  11.030  31.297  35.939   0.395
050  1710176957.788   0.638   0.024   0.013   0.002 570.480   0.194   0.650   0.613   0.124   0.083   0.126   0.056   0.001  11.094  31.349  36.069   0.401
051  1710176958.444   0.634   0.017   0.003   0.001 567.719   0.195   0.686   0.591   0.117   0.083   0.132   0.057   0.001  11.028  31.395  35.928   0.394
052  1710176959.097   0.643   0.017   0.003   0.002 566.287   0.201   0.640   0.597   0.118   0.084   0.126   0.057   0.001  10.899  31.312  35.987   0.405
053  1710176959.749   0.637   0.017   0.003   0.002 567.780   0.196   0.647   0.611   0.118   0.084   0.131   0.057   0.002  10.977  31.435  35.997   0.395
054  1710176960.402   0.642   0.018   0.003   0.002 566.576   0.196   0.659   0.598   0.118   0.083   0.125   0.063   0.001  10.988  31.387  35.980   0.394
055  1710176961.055   0.627   0.017   0.003   0.002 566.366   0.194   0.659   0.613   0.118   0.084   0.135   0.056   0.001  10.914  31.310  36.169   0.396
056  1710176961.707   0.636   0.019   0.003   0.001 569.009   0.503   0.641   0.903   0.118   0.091   0.156   0.135   0.001  11.073  31.615  36.288   0.661
057  1710176962.366   1.732   0.019   0.002   0.002 570.110   0.196   0.658   0.647   0.118   0.083   0.134   0.057   0.001  11.127  35.682  35.929   0.401
058  1710176963.027   0.644   0.018   0.003   0.002 567.595   0.194   0.651   0.635   0.117   0.083   0.127   0.056   0.001  11.326  31.369  36.038   0.396
059  1710176963.681   0.628   0.019   0.002   0.002 566.851   0.194   0.634   0.625   0.118   0.084   0.128   0.055   0.001  11.123  31.468  35.948   0.393
060  1710176964.333   0.642   0.017   0.003   0.002 566.545   0.205   0.656   0.594   0.117   0.083   0.129   0.055   0.001  11.380  31.452  36.488   0.396
061  1710176964.987   0.630   0.018   0.003   0.002 567.141   0.231   0.631   0.615   0.117   0.084   0.125   0.055   0.001  11.449  31.284  35.898   0.393
062  1710176965.640   0.635   0.017   0.003   0.001 566.420   0.194   0.602   0.623   0.118   0.083   0.121   0.057   0.006  11.244  31.312  36.203   0.401
063  1710176966.292   0.636   0.018   0.003   0.001 566.424   0.196   0.646   0.604   0.119   0.084   0.127   0.056   0.001  10.810  31.245  36.966   0.411
064  1710176966.945   0.630   0.024   0.013   0.002 566.426   0.194   0.675   0.612   0.118   0.094   0.128   0.057   0.001  11.130  31.371  36.999   0.401
065  1710176967.598   0.634   0.018   0.003   0.002 569.700   0.204   0.633   0.603   0.117   0.083   0.125   0.056   0.002  11.036  31.356  36.108   0.394
066  1710176968.253   0.640   0.018   0.003   0.002 567.129   0.195   0.607   0.688   0.124   0.084   0.124   0.056   0.001  11.009  31.371  36.027   0.401
067  1710176968.906   0.633   0.018   0.003   0.002 565.612   0.203   0.671   0.599   0.116   0.083   0.125   0.056   0.001  10.705  31.379  36.182   0.396
068  1710176969.557   0.642   0.017   0.003   0.001 568.389   0.201   0.625   0.654   0.119   0.084   0.131   0.057   0.001  11.058  31.396  36.111   0.395
069  1710176970.212   0.628   0.018   0.002   0.002 566.199   0.195   0.646   0.595   0.117   0.083   0.126   0.061   0.001  10.833  31.327  36.125   0.395
070  1710176970.863   0.642   0.017   0.003   0.002 566.881   0.197   0.664   0.591   0.117   0.090   0.124   0.057   0.001  10.981  31.328  35.953   0.392
071  1710176971.516   0.628   0.017   0.003   0.002 566.241   0.194   0.659   0.633   0.118   0.084   0.123   0.062   0.001  10.926  31.365  36.098   0.394
072  1710176972.167   0.639   0.017   0.003   0.002 569.547   0.356   0.654   0.613   0.118   0.084   0.131   0.141   0.001  11.005  31.306  35.999   0.685
073  1710176972.826   1.742   0.017   0.003   0.001 568.023   0.194   0.629   0.602   0.117   0.084   0.123   0.056   0.002  10.927  31.313  35.976   0.394
074  1710176973.480   0.641   0.017   0.003   0.001 569.769   0.195   0.636   0.678   0.117   0.083   0.124   0.061   0.001  11.282  31.428  35.903   0.399
075  1710176974.136   0.636   0.017   0.003   0.002 566.796   0.194   0.653   0.627   0.117   0.084   0.124   0.073   0.002  10.784  31.387  36.141   0.393
076  1710176974.788   0.641   0.018   0.003   0.002 566.806   0.196   0.656   0.595   0.118   0.083   0.131   0.056   0.001  11.171  31.349  35.968   0.396
077  1710176975.441   0.630   0.023   0.003   0.002 567.456   0.194   0.654   0.627   0.125   0.085   0.126   0.056   0.001  11.124  31.371  36.198   0.397
078  1710176976.094   0.643   0.017   0.003   0.002 566.938   0.195   0.613   0.596   0.117   0.083   0.124   0.056   0.001  10.970  31.337  36.105   0.393
079  1710176976.747   0.631   0.017   0.003   0.002 568.831   0.194   0.609   0.648   0.118   0.083   0.125   0.055   0.001  11.077  31.336  35.977   0.397
080  1710176977.401   0.638   0.018   0.003   0.001 564.980   0.195   0.685   0.601   0.117   0.084   0.122   0.063   0.001  10.931  31.312  36.033   0.396
081  1710176978.052   0.630   0.018   0.003   0.002 566.748   0.194   0.676   0.622   0.118   0.083   0.125   0.057   0.002  11.122  31.409  36.197   0.394
082  1710176978.704   0.641   0.026   0.012   0.002 566.579   0.197   0.665   0.650   0.118   0.083   0.125   0.061   0.001  11.342  31.363  40.708   0.396
083  1710176979.362   0.630   0.017   0.003   0.002 567.053   0.203   0.644   0.600   0.118   0.083   0.126   0.056   0.001  10.994  31.350  36.342   0.396
084  1710176980.014   0.648   0.018   0.003   0.001 567.508   0.201   0.628   0.676   0.116   0.083   0.126   0.055   0.001  11.326  31.353  35.999   0.395
085  1710176980.668   0.633   0.016   0.003   0.002 566.638   0.194   0.640   0.597   0.118   0.083   0.127   0.054   0.001  11.118  31.345  35.914   0.400
086  1710176981.320   0.646   0.017   0.003   0.002 566.983   0.195   0.702   0.590   0.121   0.087   0.124   0.056   0.001  11.220  31.319  35.979   0.398
087  1710176981.973   0.634   0.017   0.003   0.001 567.545   0.195   0.602   0.595   0.118   0.084   0.124   0.057   0.001  11.417  31.365  36.243   0.405
088  1710176982.626   0.640   0.017   0.003   0.002 565.968   0.195   0.637   0.599   0.119   0.083   0.123   0.056   0.001  10.989  31.346  35.936   0.401
089  1710176983.277   0.628   0.015   0.003   0.002 566.326   0.196   0.645   0.602   0.118   0.083   0.126   0.057   0.001  10.849  31.537  36.117   0.393
090  1710176983.929   0.637   0.016   0.003   0.002 569.852   0.194   0.683   0.611   0.117   0.084   0.126   0.055   0.001  10.798  31.367  35.928   0.401
091  1710176984.584   0.631   0.017   0.002   0.001 571.955   0.352   0.689   0.596   0.117   0.084   0.131   0.139   0.001  11.187  31.335  36.047   0.682
092  1710176985.244   1.727   0.016   0.004   0.001 566.733   0.194   0.612   0.616   0.117   0.090   0.124   0.055   0.001  10.952  31.308  36.219   0.400
093  1710176985.898   0.628   0.018   0.004   0.002 566.060   0.200   0.602   0.627   0.117   0.083   0.125   0.056   0.002  11.088  32.352  36.037   0.394
094  1710176986.550   0.635   0.017   0.003   0.002 566.814   0.195   0.640   0.622   0.117   0.083   0.123   0.056   0.001  11.324  31.351  36.345   0.393
095  1710176987.202   0.629   0.017   0.003   0.002 566.586   0.194   0.652   0.672   0.117   0.083   0.131   0.057   0.001  10.958  31.435  36.180   0.401
096  1710176987.854   0.644   0.017   0.003   0.002 566.027   0.194   0.669   0.596   0.117   0.083   0.126   0.056   0.001  10.909  31.394  36.098   0.399
097  1710176988.506   0.636   0.017   0.003   0.001 566.741   0.192   0.636   0.651   0.118   0.084   0.125   0.056   0.002  11.258  31.340  35.949   0.392
098  1710176989.158   0.640   0.017   0.003   0.002 569.880   0.201   0.642   0.664   0.117   0.083   0.123   0.055   0.001  10.825  31.324  35.999   0.404
099  1710176989.813   0.628   0.016   0.003   0.001 566.983   0.202   0.645   0.596   0.118   0.083   0.124   0.056   0.001  11.322  31.347  36.264   0.399
evt  t00(sec)    ms:  t01     t02     t03     t04     t05     t06     t07     t08     t09     t10     t11     t12     t13     t14     t15     t16     t17
job #1 median:        0.637   0.018   0.003   0.002 567.135   0.195   0.646   0.611   0.118   0.083   0.126   0.056   0.001  11.075  31.371  36.003   0.396
job #2 median:        0.628   0.017   0.003   0.001 566.815   0.194   0.638   0.639   0.117   0.084   0.128   0.055   0.001  11.071  31.411  36.020   0.391
job #3 median:        0.628   0.016   0.003   0.001 567.021   0.194   0.689   0.601   0.118   0.084   0.125   0.055   0.001  11.060  31.398  35.948   0.395
job #4 median:        0.638   0.016   0.003   0.002 567.018   0.195   0.627   0.629   0.117   0.083   0.127   0.057   0.001  11.080  31.404  35.974   0.396
job #5 median:        0.805   0.014   0.003   0.001 567.475   0.212   0.654   0.624   0.120   0.085   0.125   0.057   0.001  11.093  31.389  35.989   0.400


Summary

References

...