Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migrated to Confluence 4.0

...

Detector

...

Response

...

Matrix

...

(DRM) Implementation
#Convolution Approximations
#Performance
#Usage
#User Performance Studies

Here is a description of the binned likelihood calculation.

Detector Response Matrix (DRM) Implementation

The DRM is the matrix that transforms a binned counts spectrum from true energies to measured energies:

Wiki Markup
 Implementation|#Detector Response Matrix (DRM) Implementation]
[#Convolution Approximations]
[#Performance]
[#Usage]
[#User Performance Studies]


Here is a [description of the binned likelihood calculation|https://confluence.slac.stanford.edu/download/attachments/3342362/binned.pdf?version=1&modificationDate=1254102725000].

h3. Detector Response Matrix (DRM) Implementation

The DRM is the matrix that transforms a binned counts spectrum from true energies to measured energies:
{latex}
\begin{equation}
n_{k^\prime} = \sum_k D_{kk^\prime} n_k  \nonumber
\end{equation}
{latex}
where 

where

Wiki Markup
{latex}$n_{k^\prime}${latex}

...

are

...

the

...

counts

...

in

...

measured

...

energy

...

bin

Wiki Markup
{latex}$k^\prime${latex}

...

and
Wiki Markup
{latex}$n^k${latex}

...

are

...

the

...

counts

...

in

...

true

...

energy

...

bin

Wiki Markup
{latex}$k${latex}
.

...

The

...

DRM

...

calculation

...

in

...

Likelihood

...

follows

...

that

...

performed

...

in

...

gtrspgen:

Wiki Markup
|http://glast.stanford.edu/cgi-bin/viewcvs/rspgen/src/PointResponse.cxx?view=markup]:
{latex}
\begin{equation}
D_{kk^\prime} = \frac{\int d\theta d\phi \left[\int_{\Delta E_{k^\prime}} dE^\prime D(E^\prime; E_k, \theta, \phi)\right] A(E_k, \theta, \phi) lt(\theta, \phi)}{\int d\theta d\phi A(E_k, \theta, \phi) lt(\theta, \phi)}  \nonumber
\end{equation}
{latex}
Here 

Here

Wiki Markup
{latex}$D(E^\prime; E, \theta, \phi$){latex}

...

is

...

the

...

energy

...

dispersion

...

function,

...

Wiki Markup
{latex}$A(E, \theta, \phi)${latex}

...

is

...

the

...

effective

...

area,

...

and

Wiki Markup
{latex}$lt(\theta, \phi)${latex}

...

is

...

the

...

integrated

...

livetime

...

as

...

a

...

function

...

of

...

detector

...

coordinates

...

associated

...

with

...

the

...

specified

...

sky

...

position.

...

Wiki Markup
{latex}$E_k${latex}

...

is

...

the

...

logarithmic

...

center

...

of

...

the

Wiki Markup
{latex}$k${latex}
th

...

true

...

energy

...

bin.

...

The

...

integral

...

over

...

measured

...

energy

...

is

...

taken

...

over

...

the

...

width

...

of

...

the

Wiki Markup
{latex}$k^\prime${latex}
th

...

bin.

...

In

...

principle,

...

the

...

DRM

...

should

...

be

...

evaluated

...

at

...

each

...

sky

...

pixel

...

position

...

in

...

the

...

binned

...

counts

...

map,

...

but

...

we

...

make

...

the

...

approximation

...

that

...

the

...

DRM

...

does

...

not

...

change

...

much

...

over

...

the

...

counts

...

map

...

region

...

and

...

just

...

evaluate

...

it

...

at

...

the

...

map

...

center

...

and

...

assume

...

it

...

applies

...

everywhere

...

on

...

the

...

map.

...

This

...

is

...

supported

...

by

...

these

...

plots

...

of

...

the

...

energy

...

dispersion

...

evaluated

...

at

...

various

...

points

...

on

...

the

...

sky

...

for

...

a

...

one-day

...

survey

...

mode

...

integration:

...

Image Added

Convolution Approximations

The model counts cubes used by the binned analysis are 2D spatial arrays of sky pixels with a counts spectrum at each pixel location forming the third dimension. When energy dispersion is neglected, the model counts spectrum is a function of true energy, but with the other aspects of the instrument response applied (i.e.,

...

effective

...

area

...

and

...

PSF).

...

To

...

complete

...

the

...

forward-folding

...

of

...

the

...

model

...

counts,

...

we

...

simply

...

need

...

to

...

apply

...

the

...

DRM

...

to

...

the

...

true

...

counts

...

spectrum

...

at

...

each

...

pixel.

...

Unfortunately,

...

there

...

are

...

two

...

constraints

...

that

...

prevent

...

us

...

from

...

doing

...

this:

...

  1. To

...

  1. save

...

  1. execution

...

  1. time,

...

  1. the

...

  1. log-likelihood

...

  1. is

...

  1. evaluated

...

  1. using

...

  1. only

...

  1. the

...

  1. pixels

...

  1. that

...

  1. have

...

  1. non-zero

...

  1. data

...

  1. counts

...

  1. (as

...

  1. opposed

...

  1. to

...

  1. model

...

  1. counts).

...

  1. This

...

  1. can

...

  1. be

...

  1. seen

...

  1. in

...

  1. the

...

  1. expression

...

  1. for

...

  1. the

...

  1. Poisson

...

  1. log-likelihood,

...


  1. Wiki Markup
    {latex}
    \begin{equation}
    \log{\cal L} = \sum_j \left[n_j\log\theta_j - \theta_j\right] \nonumber
    \end{equation}
    {latex}

...


  1. where
    Wiki Markup
    {latex}$n_j${latex}

...

  1. is

...

  1. the

...

  1. observed

...

  1. count

...

  1. in

...

  1. pixel
    Wiki Markup
    {latex}$j${latex}

...

  1. and
    Wiki Markup
    {latex}$\theta_j${latex}

...

  1. is

...

  1. the

...

  1. model

...

  1. counts

...

  1. for

...

  1. that

...

  1. pixel.

...

  1. In

...

  1. the

...

  1. current

...

  1. implementation,

...

  1. this

...

  1. means

...

  1. that

...

  1. model

...

  1. counts

...

  1. are

...

  1. only

...

  1. computed

...

  1. for

...

  1. those

...

  1. non-zero

...

  1. pixels.

...

  1. For

...

  1. sparse

...

  1. datasets

...

  1. (e.g.,

...

  1. short

...

  1. integration

...

  1. times

...

  1. or

...

  1. at

...

  1. higher

...

  1. energies),

...

  1. this

...

  1. speeds

...

  1. up

...

  1. the

...

  1. calculation

...

  1. substantially:

...

  1. at

...

  1. least

...

  1. an

...

  1. order

...

  1. of

...

  1. magnitude

...

  1. for

...

  1. 1

...

  1. day

...

  1. integrations.

...

  1. Applying

...

  1. the

...

  1. DRM

...

  1. to

...

  1. each

...

  1. pixel

...

  1. counts

...

  1. spectrum

...

  1. would

...

  1. require

...

  1. the

...

  1. model

...

  1. calcuation

...

  1. to

...

  1. be

...

  1. made

...

  1. for

...

  1. every

...

  1. pixel

...

  1. in

...

  1. the

...

  1. counts

...

  1. cube,

...

  1. even

...

  1. if

...

  1. it

...

  1. is

...

  1. empty.

...

  1. However,

...

  1. assuming

...

  1. binned

...

  1. analysis

...

  1. is

...

  1. generally

...

  1. used

...

  1. for

...

  1. longer

...

  1. observations,

...

  1. and

...

  1. most

...

  1. pixels

...

  1. are

...

  1. occupied,

...

  1. this

...

  1. may

...

  1. not

...

  1. be

...

  1. a

...

  1. real

...

  1. limitation.

...

  1. A

...

  1. more

...

  1. serious

...

  1. problem

...

  1. is

...

  1. applying

...

  1. the

...

  1. DRM

...

  1. convolution

...

  1. to

...

  1. the

...

  1. true

...

  1. counts

...

  1. spectrum

...

  1. at

...

  1. each

...

  1. pixel

...

  1. location.

...

  1. If

...

  1. the

...

  1. number

...

  1. of

...

  1. energy

...

  1. bins

...

  1. is
    Wiki Markup
    {latex}$n_e${latex}
    ,

...

  1. the

...

  1. convolution

...

  1. is

...

  1. an
    Wiki Markup
    {latex}${\cal O}(n_e^2)${latex}

...

  1. operation.

...

  1. For
    Wiki Markup
    {latex}$n_e = 30${latex}
    ,

...

  1. this

...

  1. results

...

  1. in

...

  1. about

...

  1. a

...

  1. factor

...

  1. of

...

  1. 900

...

  1. slow

...

  1. down

...

  1. in

...

  1. computing

...

  1. the

...

  1. expected

...

  1. pixel

...

  1. counts

...

  1. that

...

  1. go

...

  1. into

...

  1. the

...

  1. log-likelihood.

...

Since

...

we

...

need

...

to

...

compute

...

the

...

total

...

predicted

...

counts

...

for

...

each

...

component,

...

we

...

have

...

the

...

total

...

counts

...

spectrum

...

in

...

true

...

energy

...

space

...

(This

...

is

...

easily

...

obtained

...

for

...

each

...

source

...

by

...

integrating

...

each

...

energy

...

plane

...

over

...

angle

...

in

...

the

...

associated

...

source

...

map

...

and

...

multiplying

...

by

...

the

...

spectral

...

function.)

...

We

...

can

...

then

...

convolve

...

the

...

spatially

...

integrated

...

true

...

energy

...

counts

...

spectrum

...

with

...

the

...

DRM

...

to

...

obtain

...

the

...

overall

...

measured

...

energy

...

counts

...

spectrum.

...

We

...

form

...

the

...

ratio

...

of

...

the

...

convolved

...

model

...

counts

...

to

...

unconvolved

...

model

...

counts

...

in

...

each

...

energy

...

bin.

...

When

...

computing

...

the

...

contribution

...

to

...

the

...

log-likelihood

...

from

...

each

...

pixel

Wiki Markup
{latex}$j${latex}
,

...

we

...

multiply

...

the

...

unconvolved

...

model

...

counts

...

for

...

that

...

pixel

...

by

...

the

...

ratio

...

of

...

convolved

...

to

...

unconvolved

...

model

...

counts

...

from

...

the

...

spatially

...

integrated

...

spectrum.

...

This

...

procedure

...

does

...

not

...

really

...

account

...

for

...

any

...

differences

...

in

...

counts

...

spectra

...

that

...

arise

...

from

...

spatial

...

variation

...

of

...

the

...

source

...

spectrum

...

(for

...

diffuse

...

sources),

...

exposure

...

variations

...

across

...

the

...

map

...

region,

...

and

...

the

...

effect

...

of

...

the

...

energy-dependence

...

of

...

the

...

PSF

...

on

...

the

...

counts

...

spectrum

...

(the

...

observed

...

counts

...

spectrum

...

for

...

a

...

point

...

source

...

should

...

be

...

softer

...

near

...

the

...

source

...

location).

...

All

...

of

...

these

...

neglected

...

effects

...

(they

...

may

...

be

...

others

...

I

...

am

...

missing)

...

are

...

ameliorated

...

somewhat

...

by

...

the

...

fact

...

that

...

this

...

procedure

...

has

...

the

...

right

...

local

...

effect,

...

i.e.,

...

energy

...

bins

...

on

...

the

...

falling

...

part

...

of

...

the

...

counts

...

spectrum

...

tend

...

to

...

have

...

their

...

count

...

increased

...

while

...

bins

...

on

...

the

...

rising

...

part

...

have

...

their

...

count

...

decreased.

...

This

...

procedure

...

will

...

probably

...

not

...

work

...

very

...

well

...

for

...

sharp

...

spectral

...

features.

Performance

Wiki Markup


h3. Performance

{composition-setup}
{deck:id=My Deck}
{composition-setup}
Wiki Markup
{deck:id=My Deck}
Wiki Markup
{card:label=Power-law model counts spectra for various photon indices}

I've

...

simulated

...

a

...

single

...

point

...

source

...

with

...

indices

...

1.25,

...

1.50,

...

2.00,

...

2.50,

...

3.00,

...

generating

...

70-100k

...

events

...

for

...

each

...

case

...

for

...

a

...

week

...

long

...

observation

...

with

...

idealized

...

+/-50

...

deg

...

rocking

...

and

...

fit

...

those

...

data

...

with

...

and

...

without

...

energy

...

dispersion

...

handling

...

enabled:

Image Added

Image Added

Image Added

Image Added

Image Added

data

data

data

data

data

The blue model curves and residual points correspond to the fit with energy dispersion turned off, while the red curves and residual points correspond to energy dispersion turned on. The corresponding data files have columns of

Emin

Emax

obs. counts

model counts w/ edisp

model counts w/out edisp

The input spectra to gtobssim covered 20 to 1e6 MeV and the energy range selection for the binned analysis was 30 to 3e5 MeV, with 40 logarithmically spaced bins.

Photon index best-fit values

MC index

edisp handling

no edisp handling

1.25

-1.253 +/- 1.86e-03

-1.260 +/- 1.86e-03

1.50

-1.505 +/- 2.19e-03

-1.516 +/- 2.19e-03

2.00

-2.007 +/- 3.20e-03

-2.031 +/- 3.20e-03

2.50

-2.525 +/- 4.17e-03

-2.557 +/- 4.03e-03

3.00

-3.036 +/- 4.97e-03

-3.063 +/- 4.74e-03

Wiki Markup
{card}
Wiki Markup
{card:label=Exponential cut-off power-law, various photon indices}

For these tests, a point source with an exponentially cut-off power-law spectrum is modeled and fit for different values of the photon index. The cutoff energy is fixed at 1 GeV, and values of photon index = 1.25, 1.5, 2.0, 2.5, 3.0 are used. These tests are similar to those shown in fig. 68 of v1r0 of the LAT performance paper.

Simulations are performed for P7SOURCE_V6 and DC1A IRFs and these simulations are analyzed with and without the energy dispersion handling turned on for the standard gtobssim output and without the energy dispersion handling but using the MC values for the ENERGY column which is attained simply by swapping the labels on the ENERGY and MCENERGY columns in the FT1 file. Note that this swap was done prior to making an energy range selection.

  • Input XML model to gtobssim
    Code Block
    
    <source_library title="cutoff_pl_source">
      <source name="cutoff_pl_source_3">
        <spectrum escale="MeV" flux="20" particle_name="gamma">
          <SpectrumClass name="FileSpectrum"
                         params = "flux=1, specFile=Cutoff_PowerLaw_-3.00.txt"/>
          <celestial_dir ra="266.4" dec="-28.9"/>
        </spectrum>
      </source>
      <source name="cutoff_pl_source_2.5">
        <spectrum escale="MeV" flux="7.8" particle_name="gamma">
          <SpectrumClass name="FileSpectrum"
                         params = "flux=1, specFile=Cutoff_PowerLaw_-2.50.txt"/>
          <celestial_dir ra="266.4" dec="-28.9"/>
        </spectrum>
      </source>
      <source name="cutoff_pl_source_2">
        <spectrum escale="MeV" flux="3" particle_name="gamma">
          <SpectrumClass name="FileSpectrum"
                         params = "flux=1, specFile=Cutoff_PowerLaw_-2.00.txt"/>
          <celestial_dir ra="266.4" dec="-28.9"/>
        </spectrum>
      </source>
      <source name="cutoff_pl_source_1.5">
        <spectrum escale="MeV" flux="1.14" particle_name="gamma">
          <SpectrumClass name="FileSpectrum"
                         params = "flux=1, specFile=Cutoff_PowerLaw_-1.50.txt"/>
          <celestial_dir ra="266.4" dec="-28.9"/>
        </spectrum>
      </source>
      <source name="cutoff_pl_source_1.25">
        <spectrum escale="MeV" flux="0.73" particle_name="gamma">
          <SpectrumClass name="FileSpectrum"
                         params = "flux=1, specFile=Cutoff_PowerLaw_-

...

  • 1.

...

  • 25.txt"/>
          <celestial_dir ra="266.4" dec="-28.9"/>
        </spectrum>
      </source>
    

...

  • </source_library>
    
    The flux for each source was adjusted so that 100000 events are generated for a week long idealized survey mode observation using P7SOURCE_V6.
  • The template spectra were generated with this python script, using the PLSuperExpCutoff model that is available from pyLikelihood. This same model was used in the spectral fitting to ensure consistency.

    Results

  • P7SOURCE_V6
    Image Added

    edisp-off

    edisp handling turned off

    edisp-on

    edisp handling turned on

    MC

    edisp handling turned off, but using MCENERGY values

    The red and green points substantially agree, as one would hope, and the trend is towards a harder measured spectra, as expected. However, there seems to be a residual bias in the edisp-on and MC results towards harder spectra.
  • DC1A (source fluxes were adjust to produce 200000 events)
    Image Added
    Here the differences between the three cases is much smaller, but edisp-on and MC still agree better. The same residual bias persists.
    Wiki Markup
    {card}
    Wiki Markup
    {card:label=Comparison with Instrument Performance Paper Figure}
    Figure 68 of the instrument performance paper (v1r0) shows the "fractional" error on the photon index for a power-law and cutoff power-law model for different input indices:
    Image Added
    Using the same data that went into those simulations, here are the comparisons using energy dispersion handling:

    Image Added

    Image Added

    In each plot, the black points are obtained from refitting the data without energy dispersion handling (consistent with the paper figure), and the red points are the results obtained with energy dispersion turned on.
    Wiki Markup
    {card}
    Wiki Markup
    {card:label=Soft power-law source, isotropic diffuse background}
  • The xml model that was input to gtobssim
    Code Block
    
    <source_library title="soft_source">
      <source flux="1" name="soft_source">
        <spectrum escale="MeV">
          <particle name="gamma">
            

...

  • <power_law emax="1000000.0" emin="20.0" gamma="2.5"/>
          </particle>
          <celestial_dir 

...

  • dec="

...

  • -28.

...

  • 9" 

...

  • ra="

...

  • 266.

...

  • 4"/>
        </spectrum>
      </source>
      <source name="

...

  • test_isotropic">
        <spectrum escale="MeV

...

  • "

...

  • >
          <SpectrumClass name="

...

  • Isotropic"

...

  •  params="100, 2.1, 20., 2e5"/>
          

...

  • <use_spectrum frame="galaxy"/>
        </spectrum>
      

...

  • </source>
    </source_library>
    
  • The model used in the binned analysis
    Code Block
    
    <?xml version="1.0" ?>
    <source_library title="source library">
      

...

  • <source name="

...

  • test_

...

  • source" type="PointSource">
    <!-- point source units are 

...

  • cm^-2 s^-1 MeV^-1 -->
        <spectrum 

...

  • type="

...

  • PowerLaw2">
          <parameter free="1" max="1000.0" min="1e-05" name="Integral" scale="1e-06" value="1.0"/>
          <parameter free="1" 

...

  • max="-1.0" min="-5.0" name="Index" scale="1.0" value="-2.0"/>
          

...

  • <parameter free="0" max="

...

  • 200000.

...

  • 0" 

...

  • min="

...

  • 20.

...

  • 0"

...

  •  name="LowerLimit" scale="1.0" value="20.0"/>
          <parameter free="0" max="200000.0" min="20.0" name="UpperLimit" scale="1.0" value="2e5"/>
        </spectrum>
        <spatialModel type="SkyDirFunction">
          <parameter free="0" max="360.0" min="-360.0" name="RA" scale="1.0" value="266.4"/>
          <parameter free="0" max="90.0" min="-90.0" name="DEC" scale="1.0" value="-28.9"/>
        </spatialModel>
      </source>
      <source name="Extragalactic Diffuse" type="DiffuseSource">
        <spectrum type="PowerLaw2">
          <parameter free="1" max="1000.0" min="0.0" name="Integral" scale="1e-06" value="1.0"/>
          <parameter free="1" max="-1.0" min="-5.0" name="Index" scale="1.0" value="-2.1"/>
          <parameter free="0" max="200000.0" min="20.0" name="LowerLimit" scale="1.0" value="20.0"/>
          <parameter free="0" max="200000.0" min="20.0" name="UpperLimit" scale="1.0" value="200000.0"/>
        </spectrum>
        <spatialModel type="ConstantValue">
          <parameter free="0" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/>
          <parameter free="0" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/>
        </spatialModel>
      </source>
    </source_library>
    
  • Distributions from simulations. The leftmost plot in each row is the parameter distribution obtained from the standard analysis with the energy dispersion handling turned off. The middle plot has energy dispersion handling turned on. The rightmost plot uses the MC energy values in the analysis and has energy dispersion handling turned off.
    • Photon Index of the soft point source.

      Image Added

      Image Added

      Image Added

    • Photon Index of the isotropic component.

      Image Added

      Image Added

      Image Added

      Wiki Markup
      {card}
      Wiki Markup
      {card:label=Exponential cut-off with isotropic diffuse}
  • Input model to gtobssim:
    Code Block
    
    <source_library title="cutoff_pl_source">
      <source name="cutoff_pl_source">
        <spectrum escale="MeV" flux="1" particle_name="gamma">
          <SpectrumClass name="

...

  • FileSpectrum"
                         params = "flux=1e-2, specFile=$(rootdir)/Cutoff_PowerLaw.txt"/>
          

...

  • <celestial_dir ra="266.4" dec="-28.9"/>
        </spectrum>
      </source>

...

  • 
      <source name="test_

...

  • isotropic">
        <spectrum 

...

  • escale="

...

  • MeV">
          

...

  • <SpectrumClass name="Isotropic" params="100, 2.1, 20., 2e5"/>
          <use_spectrum frame="galaxy"/>
        </spectrum>
      </source>
    </source_library>
    
  • Likelihood model
    Code Block
    
    <?xml version="1.0" ?>
    <source_library title="source library">
      <source name="test_source" type="PointSource">
    <!-- point source units are cm^-2 s^-1 MeV^-1 -->
        <spectrum type="PLSuperExpCutoff">
          <parameter free="

...

  • 1" max="

...

  • 1e3" min="

...

  • 1e-5" name="

...

  • Prefactor" scale="

...

  • 1e-07" value="

...

  • 1.0"/>
          <parameter free="1" max="

...

  • 0.0" min="

...

  • -5.0" name="

...

  • Index1" scale="1.0" value="

...

  • -1.

...

  • 7"/>
          <parameter free="0" max="

...

  • 1000.0" min="

...

  • 50.0" name="

...

  • Scale" scale="1.0" value="

...

  • 200.0

...

  • "/>
          <parameter free="

...

  • 1" max="

...

  • 30000.0" min="

...

  • 500.0" name="

...

  • Cutoff" scale="1.0" value="

...

  • 3000.

...

  • 0"/>
          <parameter free="0" max="

...

  • 5.0" min="

...

  • 0.0" name="

...

  • Index2" scale="1.0" value="

...

  • 1.

...

  • 0"/>
        </

...

  • spectrum>
      

...

  •   

...

  • <spatialModel type="

...

  • SkyDirFunction">
        

...

  •  

...

  •  

...

  • <parameter free="

...

  • 0" max="

...

  • 360.0" min="

...

  • -

...

  • 360.0" name="

...

  • RA" scale="

...

  • 1.0" value="

...

  • 266.

...

  • 4"/>
          <parameter free="

...

  • 0" max="

...

  • 90.0" min="-

...

  • 90.0" name="

...

  • DEC" scale="1.0" value="-

...

  • 28.

...

  • 9"/>
        </spatialModel>
      </source>
      <source name="Extragalactic Diffuse" type="DiffuseSource">
        <spectrum type="PowerLaw2">
          <parameter free="

...

  • 1" max="

...

  • 1e3" min="

...

  • 1e-5" name="

...

  • Integral" scale="

...

  • 1e-06" value="

...

  • 1.0"/>
          <parameter free="

...

  • 1" max="

...

  • -1.0" min="

...

  • -5.0" name="

...

  • Index" scale="1.0" value="

...

  • -2.1"/>
          <parameter free="0" max="

...

  • 200000.0" min="

...

  • 20.0" name="

...

  • LowerLimit" scale="1.0" value="

...

  • 20.0"/>
        

...

  •   

...

  • <parameter free="0" max="200000.0" min="20.0" name="UpperLimit" scale="1.0" value="2e5"/>
        </spectrum>
        <spatialModel type="ConstantValue">
          <parameter free="0" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/>
        </spatialModel>
      </source>
    </source_library>
    
  • Distributions
    • Photon index (Index1) of the exponentially cutoff power-law of the point source.

      Image Added

      Image Added

      Image Added

    • Cutoff energy of the point source.

      Image Added

      Image Added

      Image Added

    • Photon index of the isotropic component.

      Image Added

      Image Added

      Image Added

      Wiki Markup
      {card}
      Wiki Markup
      {deck}

Usage

To enable the energy dispersion handling (in ST-09-26-00

...

and

...

later),

...

set

...

the

...

USE_BL_EDISP

...

environment

...

variable:

{
Code Block
}
% setenv USE_BL_EDISP
{code}

To

...

disable

...

it,

...

unset

...

the

...

env

...

var:

{
Code Block
}
% unsetenv USE_BL_EDISP
{code}

This

...

functionality

...

can

...

also

...

be

...

turned

...

on

...

and

...

off

...

in

...

python

...

at

...

runtime:

{
Code Block
}
>>> import os
>>> os.environ['USE_BL_EDISP'] = "1"     # The precise value doesn't matter
>>> del os.environ['USE_BL_EDISP']       # In a script, this should probably be enclosed in a try/except block
{code}

In

...

ST-09-28-00

...

and

...

later,

...

energy

...

dispersion

...

handling

...

may

...

be

...

turned

...

on

...

in

...

python

...

for

...

individual

...

binned

...

analysis

...

objects:

{
Code Block
}
>>> like = binnedAnalysis(...)

>>> like.logLike.set_edisp_flag(True)    # Turn on energy dispersion handling
>>> print like.logLike.use_edisp()       # Check if edisp handling is turned on
>>> like.logLike.set_edisp_flag(False)   # Turn off
{code}

This

...

will

...

allow

...

binned

...

analysis

...

objects

...

within

...

a

...

single

...

python

...

script

...

to

...

have

...

energy

...

dispersion

...

handling

...

turned

...

on

...

or

...

off

...

independently,

...

whereas

...

the

...

environment

...

variable

...

switch

...

will

...

affect

...

all

...

analysis

...

objects

...

within

...

the

...

script

...

the

...

same

...

way.

...

User

...

Performance

...

Studies