Content
Installation
on pslogin
ana-1.3.37
scs
cd ...
virtualenv venv-pymongo
source venv-pymongo/bin/activate
???
# python -m pip install pymongo
Alternative installation:
-------------------------
# https://docs.mongodb.com/manual/tutorial/install-mongodb-on-linux/
cd lib
curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.6.2.tgz
tar -zxvf mongodb-linux-x86_64-3.6.2.tgz
mkdir -p mongodb
cp -R -n mongodb-linux-x86_64-3.6.2/ mongodb
export PATH=/reg/neh/home/dubrovin/LCLS/venv-pymongo/lib/mongodb/mongodb-linux-x86_64-3.6.2/bin/:$PATH
echo $PATH
The same in
source set_path_to_mongodb
1. Create the data directory
mkdir -p ./data/db
2. Set r/w permissions for the data directory
chmod 775 data
chmod 775 data/db
Run server
pslogin
ssh psanaphi105
cd LCLS/venv-pymongo/
source bin/activate
source set_path_to_mongodb
assumes that ./data/db is already created
mongod --dbpath ./data/db --bind_ip_all &
!!! DO NOT CLOSE WINDOW,
Shell
Shell is a manual command line interface.
mongo --host psanaphi105 --port 27017
To exit the shell, type quit() or use the <Ctrl-C> shortcut.
> db
test
> show dbs
admin 0.000GB
calib-cxif5315 0.006GB
config 0.000GB
local 0.000GB
> use calib-cxif5315
switched to db calib-cxif5315
> show collections
cspad-0-cxids1-0
cspad-1
> db["cspad-0-cxids1-0"].find()
> db["cspad-0-cxids1-0"].find().pretty()
> help
Connection to DB in python
from pymongo import MongoClient
#client = MongoClient('localhost', 27017)
client = MongoClient('psanaphi105', 27017) #, username=uname, password=pwd)
db = client['calib-cxi12345']
col = db['camera-0-cxids1-0']
Connection time is 50-150ms depending on host and time.
Tentative model of the calibration store
Experiment-centric calibration data base
# Database for experiment
dbexp = client["calib-cxif5315"]
# Collections:
col1 = dbexp["cspad-0-cxids2-0"]
col2 = dbexp["cspad2x2-0-cxids2-0"]
col3 = dbexp["andor-0-cxids2-0"]
# Document content for dbexp
doc = {
"_id":ObjectId("53402597d852426020000002"),
"experiment": "cxif5315"
"run": 123
"detector": "cspad-0-cxids2-0"
"ctype": "pedestals"
"time_sec": 1516321053
"time_nsec": 123456789
"time_stamp": "2018-01-18T16:17:33.123456789-0800"
"version": "v00-11-22"
"facility": "LCLS2"
"uid": "login-name"
"host": "psanaphi102"
"comments": ["very good constants", "throw them in trash immediately!"]
"data_size": 32*185*388
"data_shape": (32,185,388)
"data_type": "int16"
"data": np.array(...)
}
All meta-data information is accessible through a single-level document.
Detector-centric calibration data base
Error rendering macro 'code': Invalid value specified for parameter 'com.atlassian.confluence.ext.code.render.InvalidValueException'
# References or DBRefs for detectors
dbdet = client['calib-cspad']
col1 = dbdet['cspad-0-cxids1-0']
col2 = dbdet['cspad-0-cxids2-0']
col3 = dbdet['cspad-0-cxidsd-0']
col4 = dbdet['cspad-0-xcsendstation-0']
col5 = dbdet['cspad-0-xppgon-0']
col6 = dbdet['cspad-0-sxrbeamline-1']
col7 = dbdet['cspad-0-mectargetchamber-0']
# Document content for dbdet
doc = {
"_id":ObjectId("..."),
"ref_id": ObjectId("534009e4d852427820000002"),
etc...
}
Essentially document in the detector collection has a reference to the data in the experiment collections.
Data flow for documents less than 16 MB
Preparation of data
nda = gu.random_standard(shape=(32,185,388), mu=20, sigma=5, dtype=gu.np.float)
import pickle
from bson.binary import Binary
t0_sec = time()
arr = nda.flatten()
arr = ' '.join(['%.2f' % v for v in arr])
sarr = Binary(pickle.dumps(arr, protocol=2), subtype=128)
doc = {
"experiment": "cxi12345",
"run": 124,
...
"data": sarr,
}
dt_sec = time() - t0_sec
- Preparation of cspad data in text/unicode format for inserting takes ~1sec.
- Only limited precision data can be saved due to limit on document size 16MB.
Inserting data
doc_id = col.insert_one(doc).inserted_id
Insertion time is 110-180ms.
Find data
t0_sec = time()
docs = col.find({"run": 125})
dt_sec = time() - t0_sec
Finding data time is 50-60us
Unpack data
doc = docs[0]
xcarr = pickle.loads(doc["data"]) # 30-40ms
arr = gu.np.fromstring(xcarr, dtype=float, count=-1, sep=' ') # 300ms
Time to unpack is 350ms.
Data flow for large documents
Timing test is done for mongod running on psanaphi105 and scripts on psanagpu106.
Initialization
import gridfs
from pymongo import MongoClient
#client = MongoClient('localhost')
client = MongoClient('psanaphi105', 27017)
db = client['calib-cxi12345']
fs = gridfs.GridFS(db)
col = db['camera-0-cxids1-0']
Time to connect 116-150ms.
Put
ida = fs.put(nda.tobytes())
Time to save data 330-420ms.
doc = {
"experiment": "cxi12345",
"run": 126,
"detector": col.name,
"ctype": "pedestals",
"data_size": nda.size,
"data_shape": nda.shape,
"data_type": str(nda.dtype),
"data_id": ida,
...
}
doc_id = col.insert_one(doc).inserted_id
Document meta-data with reference to data preparation time is 43-53us.
Insert metadata time 0.5-0.6ms.
Get
docs = col.find({"time_stamp" : "2018-01-25T09:33:10PST"})
doc = docs[0]
Metadata find and get time: 0.7ms
s = fs.get(doc['data_id']).read()
nda = gu.np.fromstring(s)
Data extraction time: 96ms. Thus returned array is "flattend" and needs to be shaped.
Summary
- MongoDB structure has limitations in number of levels and document size.
- server may have many DBs
- DB is a container for collections
- collection is a group of documents
- document is a JSON/BSON object of key:value pairs (dictionary). Each value may be dictionary itself etc, but further structure levels are not supported by DB structure.
- document size has hardwired limit 16MB (in 2010 increased from 4 to 16MB and devs do not want to change it). CSPAD 2Mpix*8byte(double) = 16MB, but we may expect larger detectors like Jungfrau, Epix, Andor, etc.
- Larger data size is suggested to save using GridFS; split data for chanks and save chunks in the same DB in different collections.
- JSON (text) object in MongoDB is presented in unicode...(UTF-8). Data should be converted to unicode force and back in saving retrieving.
- schema-less DB looks interesting to certain extents, but in order to find something in DB there should be a schema...
- GridFS works fine with document size>16GB.
References