You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 12 Next »

Introduction

Omega3P is a parallel finite-element electrogmagnetic code for high-fidelity modeling of cavities. It calculates the resonant frequencies and other rf parameters of a cavity, as well as damping effects due to external couplings. It uses Nedelec-type hierarchical vector basis up to 6th order with quadratic (10-points) tetrahedral elements for improved solution accuracy.

Mathematical Modeling

Lossless cavities

Maxwell's equations in the frequency domain for a perfectly conducting cavity can be written as the following PDE,

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}

\nabla \times \left(\frac

Unknown macro: {1}
Unknown macro: {mu}

\nabla \times \vec

Unknown macro: {mathbf E}

\right) - k^2 \epsilon \vec

& = 0 & on \quad \Omega
\vec

Unknown macro: {mathbf n}

\times \vec

Unknown macro: {mathbf E}

& = 0 & on \quad \Gamma_

Unknown macro: {E}


\vec

\times \left( \frac

Unknown macro: {mu}

\nabla \times \vec

Unknown macro: {mathbf E}

\right) & = 0 & on \quad \Gamma_

Unknown macro: {M}


\end

We use Neelec-type vector basis functions to discretize the electric field:

Unknown macro: {latex}

[\vec

Unknown macro: {mathbf E}

=\sum_i x_i \vec

Unknown macro: {mathbf N}

_i]

We obtain the following generalized eigenvalue problem:

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}
Unknown macro: {mathbf Kx}

= k^2

Unknown macro: {mathbf Mx}

\quad where &

Unknown macro: {mathbf K}

_

Unknown macro: {ij}

= \int_

Unknown macro: {Omega}

\left( \nabla \times \vec

Unknown macro: {mathbf N}

_i \right) \cdot \frac

Unknown macro: {1}
Unknown macro: {mu}

\left( \nabla \times \vec

_j \right) d\Omega &

Unknown macro: {mathbf M}

_

= \int_

Unknown macro: {Omega}

\vec

Unknown macro: {mathbf N}

_i \cdot \epsilon \vec

_j d\Omega &
\end

The matrix K is real symmetric while M is real symmetric positive definite. If there are lossy materials in the cavity, the matrix M and/or K will be complex.

Waveguide loaded cavities

For modeling waveguide-loaded cavities, we use either the absorbing boundary condition (ABC) or the waveguide boundary condition (WBC). The following picture illustrates a cavity with 3 waveguides, and each of them is modeled with ABC.

The discretized system is a complex nonlinear eigenvalue problem,

Unknown macro: {latex}

[

Unknown macro: {mathbf Kx}

+ i \sum_j \sqrt{k^2-k^2_{cj}}

Unknown macro: {mathbf W}

_j

Unknown macro: {mathbf x}

= k^2

Unknown macro: {mathbf Mx}

]

where the damping matrix W is

Unknown macro: {latex}

[
(

Unknown macro: {mathbf W}

j)

Unknown macro: {mn}

= \int_

Unknown macro: {Gamma}

\left( \vec

Unknown macro: {mathbf n}

\times \vec

Unknown macro: {mathbf N}

_m \right) \cdot \left( \vec

\times \vec

Unknown macro: {mathbf N}

_n \right) d\Gamma
]

The following picture illustrates a cavity with waveguides, which are modeled with WBC.

The corresponding discretized system becomes a complex nonlienar eigenvalue problem,

Unknown macro: {latex}

[

Unknown macro: {mathbf Kx}

+ i \sum_

Unknown macro: {m,n}

\sqrt{k^2-(k^

Unknown macro: {TE}

_

Unknown macro: {mn}

)^2}

Unknown macro: {mathbf W}

^

_

Unknown macro: {mn}

Unknown macro: {mathbf x}

+ i \sum_

\frac

Unknown macro: {k^2}

{\sqrt{k^2-(k^

_

Unknown macro: {mn}

)^2}}

Unknown macro: {mathbf W}

^

TM _

Unknown macro: {mn}

Unknown macro: {mathbf x}

= k^2

Unknown macro: {mathbf Mx}

]

where the waveguide matrices are

Unknown macro: {latex}

[
(

Unknown macro: {mathbf W}

^

Unknown macro: {TE}

_

Unknown macro: {mn}

)_

Unknown macro: {ij}

= \int_

Unknown macro: {Gamma}

\vec

Unknown macro: {mathbf e}

^

_

Unknown macro: {mn}

\cdot \vec

Unknown macro: {mathbf N}

i d\Gamma \int

Unknown macro: {Gamma}

\vec

Unknown macro: {mathbf e}

^

Unknown macro: {TE}

_

\cdot \vec

Unknown macro: {mathbf N}

_j d\Gamma
]
]

where the waveguide matrices are

Unknown macro: {latex}

[
(

Unknown macro: {mathbf W}

^

_

Unknown macro: {mn}

)_

Unknown macro: {ij}

= \int_

Unknown macro: {Gamma}

\vec

Unknown macro: {mathbf e}

^

TM _

Unknown macro: {tmn}

\cdot \vec

Unknown macro: {mathbf N}

i d\Gamma \int

Unknown macro: {Gamma}

\vec

Unknown macro: {mathbf e}

^TM _

\cdot \vec

Unknown macro: {mathbf N}

_j d\Gamma
]

Numerical Methods

The following is a graphical description of the four different types of physics problems that Omega3P can solve and the solver options that can be used.

  • No labels