You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

Introduction

Omega3P is a parallel finite-element electrogmagnetic code for high-fidelity modeling of cavities. It calculates the resonant frequencies and other rf parameters of a cavity, as well as damping effects due to external couplings. It uses Nedelec-type hierarchical vector basis up to 6th order with quadratic (10-points) tetrahedral elements for improved solution accuracy.

Mathematical Modeling

Maxwell's equations in the frequency domain for a perfectly conducting cavity can be written as the following PDE,

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}

\nabla \times \left(\frac

Unknown macro: {1}
Unknown macro: {mu}

\nabla \times \vec

Unknown macro: {mathbf E}

\right) - k^2 \epsilon \vec

& = 0 & on \quad \Omega
\vec

Unknown macro: {mathbf n}

\times \vec

Unknown macro: {mathbf E}

& = 0 & on \quad \Gamma_

Unknown macro: {E}


\vec

\times \left( \frac

Unknown macro: {mu}

\nabla \times \vec

Unknown macro: {mathbf E}

\right) & = 0 & on \quad \Gamma_

Unknown macro: {M}


\end

We use Neelec-type vector basis functions to descretize the electric field

Unknown macro: {latex}

[\vec

Unknown macro: {mathbf E}

=\sum_i x_i \vec

Unknown macro: {mathbf N}

_i]

and obtain the following generalized eigenvalue problem:

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}
Unknown macro: {mathbf Kx}

& = k^2

Unknown macro: {mathbf Mx}

& where

Unknown macro: {mathbf K}

_

Unknown macro: {ij}

& = \int_

Unknown macro: {Omega}

\left( \nabla \times \vec

Unknown macro: {mathbf N}

_i \right) \cdot \left( \nabla \times \vec

_j \right) \ d\Omega &
\end

  • No labels