You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »

A complete example for a lossless cavity

  ModelInfo: {
    File: dds3.ncdf                             //mesh file. It is the file converted using acdtool
    BoundaryCondition: {                   //specify boundary conditions. The numbers here are sideset in cubit
      Magnetic: 1, 2                           //reference surfaces 1 and 2 are symmetric planes
      Electric: 3 4                               //set reference surfaces 3 and 4 to be electric boundary condition
      Exterior: 6                                 //surface group 6 (maybe many surfaces) is metal
   }
   SurfaceMaterial: {                          //for each metal (exterior) surface group, list the sigma values
      ReferenceNumber: 6
      Sigma: 5.8e7
    }
  }

  FiniteElement: {
     Order: 2                                     //set the finite element basis function order to be used.
     CurvedSurfaces: on
  }

  EigenSolver: {
      NumEigenvalues:     1                //want to compute 1 mode
      FrequencyShift: 		10.e9     //the eigenfrequency of the mode should be above 10GHz
  }

  CheckPoint: {
    Action: save
    Directory: eigens                         //eigenvectors are saved out into this directory
  }

  PostProcess: {
    Toggle: off                                   //postprocess switch
    ModeFile: dds                              //The prefix of the mode filename.
  }

  Log: thisrun.log                              //If you want more printout logged into the file

Once Omega3P run is successfully completed, eignvectors are stored in subdirectory <tt>eigens</tt>. User can convert them to mode files to be visualized using paraview. The following is the command to do that:

  acdtool postprocess eigentomode eigens

A complete example about a cavity with lossy materials

 ModelInfo: {
  File: ./pillbox.ncdf
  BoundaryCondition: {
    Electric: 1,2,3,4
    Exterior: 6
  }
   Material : {
     Attribute: 1
     Epsilon:   1.0
     Mu:        1.0
   }
   Material : {
      Attribute: 2
      Epsilon:   1.0
      Mu:        1.0
      EpsilonImag: -0.2        //lossy material
   }
 }

  FiniteElement: {
   Order: 1
   Curved Surfaces: off
  }

  PostProcess: {
    Toggle: off
    ModeFile: mode
    SymmetryFactor: 2
  }

  EigenSolver: {
    NumEigenvalues:     2
    FrequencyShift: 		5e9
  }

A complete example with waveguide loaded cavity

  ModelInfo: {
    File: cell1fourth.ncdf
    BoundaryCondition: {
      Magnetic: 1,2,3,4
      Exterior: 6
      Waveguide: 7    //for each number appeared here, it should have at least one Port container later. 
    }
  }

  FiniteElement: {
    Order:           1
    Curved Surfaces: on
  }

  PostProcess: {
    Toggle: on
    ModeFile: test
  }
        
  EigenSolver: {
    NumEigenvalues:     1
    FrequencyShift: 		9.e9
  }

  CheckPoint: {
    Action: save
    Directory: eigens
  }


  Port: {
        ReferenceNumber: 7     //this number should match surface groups in waveguide boundary condition.
        Origin:     0.0, 0.0415, 0.0    //the origin of the 2D port in the 3D coordinate system
        XDirection: 1.0, 0.0,    0.0    //the x axis of the 2D port in the 3D coordinate system
        YDirection: 0.0, 0.0,   -1.0   //the y axis of the 2D port in the 3D coordinate system
        ESolver: {
                Type: Analytic              //analytic expression is used 
                Mode: {
                        WaveguideType: Rectangular     //it is a rectangular waveguide
                        ModeType: TE 1 0                    //load the TE10 mode
                        A: 0.028499                            //dimension of the waveguide in x
                        B: 0.0134053                           //dimension of the waveguide in y
                 }
         }
   }

Load TEM mode in a coax waveguide

   Port: {
        ReferenceNumber: 2
        Origin:     0.0, 0.0, 0.011
        ESolver: {
                Type: Analytic
                Mode: {
                        WaveguideType: Coax
                        ModeType: TEM 
                        A: 0.0011  //smaller radius
                        B: 0.0033  //larger radius
                }
        }
   }

  • No labels