You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 72 Next »

General information: Usually meetings take place on Tuesdays at 2pm in the Sycamore Conference Room (Building 40, Room 195) at SLAC, but please check the schedule.  To join the mailing list either email Daniel Ratner (dratner at slac) or directly join the list-serv AI-AT-SLAC at listserv.slac.stanford.edu.  Please contact Daniel Ratner if you are interested to give a talk!

Upcoming Seminar


Exploratory Studies in Neural Network-based Modeling and Control of Particle Accelerators

Date: Aug. 1, 2pm

Speaker: Auralee Edelen (CSU)

Particle accelerators are host to myriad control challenges: they involve a multitude of interacting systems, are often subject to tight performance demands, in many cases exhibit nonlinear behavior, sometimes are not well-characterized due to practical and/or fundamental limitations, and should be able to run for extended periods of time with minimal interruption. One avenue toward improving the way these systems are controlled is to incorporate techniques from machine learning. Within machine learning, neural networks in particular are appealing because they are highly flexible, they are well-suited to problems with nonlinear behavior and large parameter spaces, and their recent success in other fields (driven largely by algorithmic advances, greater availability of large data sets, and improvements in high performance computing resources) is an encouraging indicator that they are now technologically mature enough to be fruitfully applied to particle accelerators. This talk will highlight a few recent efforts in this area that were focused on exploring neural network-based approaches for modeling and control of several particle accelerator subsystems, both through simulation and experimental studies. 

TBD

Date: Aug. 8, 2pm

Speaker: Leo Guibas (Stanford)

TBD

Date: Aug. 15, 2pm

Speaker: Jeffrey Donatelli (CAMERA, Berkeley)


MacroBase: A Search Engine for Fast Data Streams

Date: Sept. 5, 2pm

Speaker: Sahaana Suri (Stanford)

While data volumes generated by sensors, automated process, and application telemetry continue to rise, the capacity of human attention remains limited. To harness the potential of these large scale data streams, machines must step in by processing, aggregating, and contextualizing significant behaviors within these data streams. This talk will describe progress towards achieving this goal via MacroBase, a new analytics engine for prioritizing attention in this large-scale "fast data" that has begun to deliver results in several production environments. Key to this progress are new methods for constructing cascades of analytic operators for classification, aggregation, and high-dimensional feature selection; when combined, these cascades yield new opportunities for dramatic scalability improvements via end-to-end optimization for streams spanning time-series, video, and structured data. MacroBase is a core component of the Stanford DAWN project (http://dawn.cs.stanford.edu/), a new research initiative designed to enable more usable and efficient machine learning infrastructure.


Past Seminars


Estimating behind-the-meter solar generation with existing measurement infrastructure

Date: July 11, 2pm

Speaker: Emre Kara

Real-time PV generation information is crucial for distribution system operations such as switching, 
state-estimation, and voltage management. However, most behind-the-meter solar installations are not 
monitored.Typically, the only information available to the distribution system operator is the installed 
capacity of solar behind each meter; though in many cases even the presence of solar may be unknown. 
We present a method for disaggreagating behind-the-meter solar generation using only information that 
is already available in most distribution systems. Specifically, we present a contextually supervised source 
separation strategy adopted to address the behind-the-meter solar disaggregation problem. We evaluate
the model sensitivities to different input parameters such as the number of solar proxy measurements, number 
of days in the training set, and region size. 

EmreKara_Estimating%20the%20behind-the-meter%20solar%20generation%20with%20existing%20infrastructure.pdf

Development and Application of Online Optimization Algorithms

Date: June 27, 3pm

Location: Kings River, B52-306 (Note change in time and place!)

Speaker: Xiabiao Huang

Automated tuning is an online optimization process.  It can be faster and more efficient than manual tuning and can lead to better performance. It may also substitute or improve upon model based methods. Noise tolerance is a fundamental challenge to online optimization algorithms. We discuss our experience in developing a high efficiency, noise-tolerant optimization algorithm, the RCDS method, and the successful application of the algorithm to various real-life accelerator problems. Experience with a few other online optimization algorithms are also discussed.

XiaobiaoHuang_RCDS.pdf

Machine Learning at NERSC: Past, Present, and Future

Date: May 16, 2pm

Speaker: Prabhat (NERSC)

Modern scientific discovery increasingly relies upon analysis of experimental and observational data. Instruments across a broad range of spatial scales: telescopes, satellites, drones, genome sequencers, microscopes, particle accelerators, gather increasingly large and complex datasets. In order to ‘infer’ properties of nature, in light of noisy, incomplete measurements, scientists needs access to sophisticated statistics and machine learning tools. In order to address these emerging challenges, NERSC has deployed a portfolio of Big Data technologies on HPC platforms. This talk will review the evolution of Data Analytics tools (statistics, machine learning/deep learning) in the recent past, comment on current scientific use cases and challenges, and speculate on the future of AI-powered scientific discovery.


Optimization for Transportation Efficiency

Date: May 2, 2pm

Location: Sycamore Conference Room (040-195)

Speaker: John Fox

Abstract: Plug-in hybrid and all-electric vehicles offer potential to transfer energy demands from liquid petroleum fuels to grid-sourced electricity. We are investigating optimization methods to improve the efficiency and resource utilization of Plug-in Hybrid Electric Vehicles (HEVs).  Our optimization uses information about a known or estimated vehicle route to predict energy demands and optimally manage on-board battery and fuel energy resources to maximally use grid-sourced electricity and minimally use petroleum resources for a given route.  Our convex optimization method uses a simplified car model to find the optimal strategy over the whole route, which allows for re-optimization on the fly as updated route information becomes available.  Validation between the simplified model and a more complete vehicle technology model simulation developed at Argonne National Laboratory was accomplished by "driving" the complete car simulation with the simplified control model.  By driving on routes with the same total energy demand but different demand profiles we show fuel efficiency gains of 5-15% on mixed urban/suburban routes compared to a Charge Depleting Charge Sustaining (CDCS) battery controller. The method also allows optimizing the economic lifetime of the vehicle battery by considering the stress on the battery from charge and discharge cycles in the resource optimization.

Jfoxhybrid.pdf

 


Detecting Simultaneous Changepoints Across Multiple Data Sequences

Date: April 25, 3pm

Location: Kings River, 052-306 (NOTE DIFFERENT LOCATION)

Speaker: Zhou Fan

Abstract: Motivated by applications in genomics, finance, and biomolecular simulation, we introduce a Bayesian model called BASIC for changepoints that tend to co-occur across multiple related data sequences. We design efficient algorithms to infer changepoint locations by sampling from and maximizing over the posterior changepoint distribution. We further develop a Monte Carlo expectation-maximization procedure for estimating unknown prior hyperparameters from data. The resulting framework accommodates a broad range of data and changepoint types, including real-valued sequences with changing mean or variance and sequences of counts or binary observations. We use the resulting BASIC framework to analyze DNA copy number variations in the NCI-60 cancer cell lines and to identify important events that affected the price volatility of S&P 500 stocks from 2000 to 2009.

 

ZhouFan_BASIC.pdf

Low Data Drug Discovery with One-Shot Learning

Date: April 18, 2pm

Speaker: Bharath Ramsundar

Location: Berryessa Conference Room (B53-2002)  (NOTE DIFFERENT ROOM!)

Abstract: Recent advances in machine learning have made significant contributions to drug discovery. Deep neural networks in particular have been demonstrated to provide significant boosts in predictive power when inferring the properties and activities of small-molecule compounds. However, the applicability of deep learning has been limited by the requirement for large amounts of training data. In this work, we demonstrate how one-shot learning can be used to significantly lower the amounts of data required to make meaningful predictions in drug discovery applications. We introduce a new architecture, the iterative refinement long short-term memory, that, when combined with graph convolutional neural networks, significantly improves learning of meaningful distance metrics over small-molecules. Our models are open-sourced as part of DeepChem, an open framework for deep-learning in drug discovery and quantum chemistry.

 

Bio: Bharath Ramsundar received a BA and BS from UC Berkeley in EECS and Mathematics and was valedictorian of his graduating class in mathematics. He is currently a PhD student in computer science at Stanford University with the Pande group. His research focuses on the application of deep-learning to drug-discovery. In particular, Bharath is the creator and lead-developer of DeepChem, an open source package that aims to democratize the use of deep-learning in drug-discovery and quantum chemistry. He is supported by a Hertz Fellowship, the most selective graduate fellowship in the sciences.

Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis

Date: Mar. 28, 2pm

Speaker: Michela Paganini

Location: Berryessa Conference Room (B53-2002)

Abstract: We provide a bridge between generative modeling in the Machine Learning community and simulated physical processes in High Energy Particle Physics by applying a novel Generative Adversarial Network (GAN) architecture to the production of jet images -- 2D representations of energy depositions from particles interacting with a calorimeter. We propose a simple architecture, the Location-Aware Generative Adversarial Network, that learns to produce realistic radiation patterns from simulated high energy particle collisions. The pixel intensities of GAN-generated images faithfully span over many orders of magnitude and exhibit the desired low-dimensional physical properties (i.e., jet mass, n-subjettiness, etc.). We shed light on limitations, and provide a novel empirical validation of image quality and validity of GAN-produced simulations of the natural world. This work provides a base for further explorations of GANs for use in faster simulation in High Energy Particle Physics.

gan_presentation_SLAC.pdf

 

Models and Algorithms for Solving Sequential Decision Problems under Uncertainty

Date: Mar. 21, 2pm

Speaker: Mykel Kochenderfer

Location: Sycamore Conference Room (040-195)

Abstract: Many important problems involve decision making under uncertainty, including aircraft collision avoidance, wildfire management, and disaster response. When designing automated decision support systems, it is important to account for the various sources of uncertainty when making or recommending decisions. Accounting for these sources of uncertainty and carefully balancing the multiple objectives of the system can be very challenging. One way to model such problems is as a partially observable Markov decision process (POMDP). Recent advances in algorithms, memory capacity, and processing power, have allowed us to solve POMDPs for real-world problems. This talk will discuss models for sequential decision making and algorithms for solving them.

Data Programming: A New Framework for Weakly Supervising Machine Learning Models

Date: Mar. 7, 2pm

Speaker: Alex Ratner

Location: Sycamore Conference Room (040-195)

Abstract: Today's state-of-the-art machine learning models require massive labeled training sets--which usually do not exist for real-world applications. Instead, I’ll discuss a newly proposed machine learning paradigm--data programming--and a system built around it, Snorkel, in which the developer focuses on writing a set of labeling functions, which are just scripts that programmatically label data. The resulting labels are noisy, but we model this as a generative process—learning, essentially, which labeling functions are more accurate than others—and then use this to train an end discriminative model (for example, a deep neural network in TensorFlow).  Given certain conditions, we show that this method has the same asymptotic scaling with respect to generalization error as directly-supervised approaches. Empirically, we find that by modeling a noisy training set creation process in this way, we can take potentially low-quality labeling functions from the user, and use these to train high-quality end models. We see this as providing a general framework for many weak supervision techniques, and at a higher level, as defining a new programming model for weakly-supervised machine learning systems.

AlexRatner_SLAC_ml_reading_share.pptx

ProxImaL: Efficient Image Optimization using Proximal Algorithms

Date: Feb. 28, 2pm

Speaker: Felix Heide

Location: Truckee Room (B52-206) (NOTE ROOM CHANGE!)

Abstract: Computational photography systems are becoming increasingly diverse while computational resources, for example on mobile platforms, are rapidly increasing. As diverse as these camera systems may be, slightly different variants of the underlying image processing tasks, such as demosaicking, deconvolution, denoising, inpainting, image fusion, and alignment, are shared between all of these systems. Formal optimization methods have recently been demonstrated to achieve state-of-the-art quality for many of these applications. Unfortunately, different combinations of natural image priors and optimization algorithms may be optimal for different problems, and implementing and testing each combination is currently a time consuming and error prone process.

ProxImaL is a domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety of linear and nonlinear image formation models and cost functions, advanced image priors, and different noise models. The compiler intelligently chooses the best way to translate a problem formulation and choice of optimization algorithm into an efficient solver implementation. In applications to the image processing pipeline deconvolution in the presence of Poisson-distributed shot noise, and burst denoising, we show that a few lines of ProxImaL code can generate a highly-efficient solver that achieves state-of-the-art results. We also show applications to the nonlinear and nonconvex problem of phase retrieval.

Energy-efficient neuromorphic hardware and its use for deep neural networks

Date: Feb. 14, 2pm

Speaker: Steve Esser (IBM)

Location: Sycamore Conference Room (040-195)

Abstract: Neuromorphic computing draws inspiration from the brain's structure to create energy-efficient hardware for running neural networks.  Pursuing this vision, we created the TrueNorth chip, which embodies 1 million neurons and 256 million configurable synapses in contemporary silicon technology, and runs using under 100 milliwatts.  Spiking neurons, low-precision synapses and constrained connectivity are key design factors in achieving chip efficiency, though they stand in contrast to today's conventional neural networks that use high precision neurons and synapses and have unrestricted connectivity.  Conventional networks are trained today using deep learning, a field developed independent of neuromorphic computing, and are able to achieve human-level performance on a broad spectrum of recognition tasks.  Until recently, it was unclear whether the constraints of energy-efficient neuromorphic computing were compatible with networks created through deep learning.  Taking on this challenge, we demonstrated that relatively minor modifications to deep learning methods allows for the creation of high performing networks that can run on the TrueNorth chip.  The approach was demonstrated on 8 standard datasets encompassing vision and speech, where near state-of-the-art performance was achieved while maintaining the hardware's underlying energy-efficiency to run at > 6000 frames / sec / watt.  In this talk, I will present an overview of the TrueNorth chip, our methods to train networks for this chip and a selection of performance results.

Locating Features in Detector Images with Machine Learning

Date: Feb. 7, 2pm

Speaker: David Schneider

Location: Sycamore Conference Room (040-195)

Abstract: Often analysis at LCLS involves image processing of large area detectors. One goal is to find the presence, and location of certain features in the images.  We’ll look at several approaches to locating features using machine learning. The most straightforward is learning from training data that includes feature locations. When location labels are not in the training data, techniques like guided back propagation, relevance propagation,  or occlusion can be tried. We’ll discuss work on applying these approaches. We’ll also discuss ideas based on generative models like GAN’s (Generative Adversarial Networks) or VAE’s (Variational Auto Encoders).


machine_learning_at_LCLS_locating_features_in_detector_images.pdf

Tractable quantum leaps in battery materials and performance via machine learning

Date: Jan. 17, 2017
Speaker: Austin Sendek

Abstract: The realization of an all solid-state lithium-ion battery would be a tremendous development towards remedying the safety issues currently plaguing lithium-ion technology. However, identifying new solid materials that will perform well as battery electrolytes is a difficult task, and our scientific intuition on whether a material is a promising candidate is often poor. Compounding on this problem is the fact that experimental measurements of performance are often very time- and cost intensive, resulting in slow progress in the field over the last several decades. We seek to accelerate discovery and design efforts by leveraging previously reported data to train learning algorithms to discriminate between high- and poor performance materials. The resulting model provides new insight into the physics of ion conduction in solids and evaluates promise in candidate materials nearly one million times faster than state-of-the-art methods. We have coupled this new model with several other heuristics to perform the first comprehensive screening of all 12,000+ known lithium-containing solids, allowing us to identify several new promising candidates.

sendek_materials.pptx


Deep Learning and Computer Vision in High Energy Physics

Date: Dec 6, 2016

Speaker: Michael Kagan

Location: Kings River 306, B52 

 Abstract: Recent advances in deep learning have seen great success in the realms of computer vision, natural language processing, and broadly in data science.  However,  these new ideas are only just beginning to be applied to the analysis of High Energy Physics data. In this talk, I will discuss developments in the application of computer vision and deep learning techniques to the analysis and interpretation of High Energy Physics data, with a focus on the Large Hadron Collider. I will show how these state-of-the-art techniques can significantly improve particle identification, aid in searches for new physics signatures, and help reduce the impact of systematic uncertainties. Furthermore, I will discuss methods to visualize and interpret the high level features learned by deep neural networks that provide discrimination beyond physics derived variables, adding a new capability to understand physics and to design more powerful classification methods in High Energy Physics.

Kagan_MLHEP_Dec2016.pdf

Links to papers discussed:

https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1611.01046

 

Label-Free Supervision of Neural Networks with Physics and Domain Knowledge

Date: Oct 18, 2016

Speaker: Russell Stewart

Abstract: In many machine learning applications, labeled data is scarce and obtaining more labels is expensive. We introduce a new approach to supervising neural networks by specifying constraints that should hold over the output space, rather than direct examples of input-output pairs. These constraints are derived from prior domain knowledge, e.g., from known laws of physics. We demonstrate the effectiveness of this approach on real world and simulated computer vision tasks. We are able to train a convolutional neural network to detect and track objects without any labeled examples. Our approach can significantly reduce the need for labeled training data, but introduces new challenges for encoding prior knowledge into appropriate loss functions.

Russell_constraint based learning slac.keyRussell_constraint based learning slac.pdf


Can machine learning teach us physics? Using Hidden Markov Models to understand molecular dynamics.

Date: Sept 21, 2016

Speaker: T.J. Lane

Abstract: Machine learning algorithms are often described solely in terms of their predictive capabilities, and not utilized in a descriptive fashion. This “black box” approach stands in contrast to traditional physical theories, which are generated primarily to describe the world, and use prediction as a means of validation. I will describe one case study where this dichotomy between prediction and description breaks down. While attempting to model protein dynamics using master equation models — known in physics since the early 20th century — it was discovered that there was a homology between these models and Hidden Markov Models (HMMs), a common machine learning technique. By adopting fitting procedures for HMMs, we were able to model large scale simulations of protein dynamics and interpret them as physical master equations, with implications for protein folding, signal transduction, and allosteric modulation.

TJLane_SLAC_ML_Sem.pptx


On-the-fly unsupervised discovery of functional materials

Date: Aug 31, 2016

Speaker: Apurva Mehta

Abstract: Solutions to many of the challenges facing us today, from sustainable generation and storage of energy to faster electronics and cleaner environment through efficient sequestration of pollutants, is enabled by the rapid discovery of new functional materials. The present paradigm based on serial experimentation and serendipitous discoveries takes decades from initiation of a new search for a material to marketplace deployment of a device based on it. Major road-blocks in this process arise from heavy dependence on humans to transfer knowledge between interdependent steps. For example, currently humans look for patterns in current knowledge-bases, build hypotheses, plan and conduct experiments, evaluate results and extract knowledge to create the next hypothesis. The recent insight, emerging from the materials genome initiative, is that rapid transfer of information between hypothesis building, experimental testing and scale-up engineering can reduce the time and cost of material discovery and deployment by half. Humans, though superb at pattern recognition and complex decision making, are too slow and the major challenge in this new discovery paradigm is to reliably extract high-level actionable information from large and noisy data on-the-fly with minimal human intervention. In here, I will discuss some of the strategies and challenges involved in construction of unsupervised machines that perform these tasks on high throughput and large volume X-ray spectroscopic and scattering data sets.

ApurvaMehta_AI group talkv3.pptx

 

Machine Learning and Optimization to Enhance the FEL Brightness

Date: Aug 17, 2016

Speakers: Anna Leskova, Hananiel Setiawan, Tanner M. Worden, Juhao Wu

Abstract: Recent studies on enhancing the FEL brightness via machine learning and optimization will be reported. The topics are tapered FEL and improved SASE. The existing popular machine learning approaches will be reviewed and selected based on the characteristics of different tasks. Numerical simulation and preliminary LCLS experiment results will be presented. 

Leskova_PresentAI.pptx

 

Automated tuning at LCLS using Bayesian optimization

Date: July 6, 2016

Speaker: Mitch McIntire

Location: Truckee Room, B52-206 T

Abstract: The LCLS free-electron laser has historically been tuned by hand by the machine operators. Existing tuning procedures account for hundreds of hours of machine time per year, and so efforts are underway to reduce this tuning time via automation. We introduce an approach for automated tuning using Bayesian optimization with statistical models called Gaussian processes. Initial testing has shown that this method can substantially reduce tuning time and is potentially a significant improvement on existing automated tuning methods. In this talk I'll describe Bayesian optimization and Gaussian processes and share some details and insights of implementation, as well as our preliminary results.

McIntire_AI-at-SLAC.pdf

Using Deep Learning to Sort Down Data

Date: June 15, 2016
Speaker: David Schneider

Abstract:
We worked on data from a two color experiment (each pulse has two bunches at different energy levels). The sample reacts differently depending on which of the colors lased and the energy in the lasing. We used deep learning to train a convolutional neural network to predict these lasing and energy levels from the xtcav diagnostic images. We then sorted down the data taken of the sample based on these values and identified differences in how the sample reacted. Scientific results from the experiment will start with an analysis of these differences. We used guided back propagation to see what the neural network identified as important and were able to obtain images that isolate the lasing portions of the xtcav images.

xtcav_mlearn.pdf

 

 

  • No labels