You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 71 Next »

Basic Recipe

This is the basic recipe for reconstructing HPS data:

  1.  EVIO data files are read in and converted to LCIO events.
  2. The HPS Java reconstruction is run to add physics object collections to the events.
  3. The events are written to an LCIO file containing results of the recon.
  4. The recon LCIO file can be converted to ROOT DST Data Format.

Oftentimes, steps 1-3 are performed in the same job (process) for efficiency using the EvioToLcio command line utility.

Overview

The HPS physics reconstruction is implemented in the HPS Java project as a chain of org.lcsim Drivers which process LCIO Data Format events that are accessed using the EventHeader API.  The driver list is described in an lcsim xml steering file which is configured by the lcsim job manager.  

What is a Driver?

In the context of LCSim and HPS Java, a driver is an event processing component that operates on each event in a record processing loop and may add new object collections to the event.  For example, a driver might convert ADC data to a hits collection or it could perform track finding and create new track object collections.

The EVIO Data Format is converted into LCIO by an LCSimEventBuilder such as LCSimEngRunEventBuilder.  The EvioToLcio command line tool reads EvioEvents with an EvioReader and then uses an event builder to create LCIO events representing the raw data.  The driver chain is then run to perform the physics reconstruction which will add additional object collections to the event.  The combined events with the data and recon collections are written out to an LCIO file.  The LCIO output can be converted to ROOT DST Data Format for ROOT compatibility, or it may be loaded back into HPS Java for analysis. 

Reconstruction Drivers 

The reconstruction Driver chain is defined in production steering files such as EngineeringRun2015FullRecon.lcsim, which are kept in this SVN folder and typically accessed as a class resource from a jar file.

Driver NameDriver ClassDescription

RfFitter

RfFitterDriverconverts accelerator's RF wave form to time and inserts into event
EcalRunningPedestal

EcalRunningPedestalDriver

calculates per channel running averages for ECal signal pedestals
EcalRawConverterEcalRawConverterDriverconverts ECal digits to CalorimeterHit collection with energy and time measurements
ReconClustererReconClusterDriverperforms calorimeter clustering algorithm on ECal hits
CopyCollectionCopyClusterCollectionDrivercopies calorimeter clusters to new collection to preserve uncorrected energy measurements
RawTrackerHitSensorSetupRawTrackerHitSensorSetupassigns RawTrackerHits to their sensors for use by track recon
RawTrackerHitFitterDriverRawTrackerHitFitterDriverfits ADC vs time signal to produce fitted hits collection
TrackerHitDriverDataTrackerHitDrivercreates stereo pairs from from SVT strip hits
HelicalTrackHitDriverHelicalTrackHitDrivercreates 3D hits from clusters of stereo pairs
TrackReconSeed345Conf2Extd16TrackerReconDriverruns track finding using layers 3, 4 & 5 as a seed, layer 2 to confirm, and layers 1 and 6 to extend
TrackReconSeed456Conf3Extd21TrackerReconDriverruns track finding using layers 4, 5 & 6 as a seed, layer 3 to confirm, and layers 2 and 1 to extend
TrackReconSeed123Conf4Extd56TrackerReconDriverruns track finding using layers 1, 2 & 3 as a seed, layer 4 to confirm, and layers 5 and 6 to extend
TrackReconSeed123Conf5Extd46TrackerReconDriverruns track finding using layers 1, 2 & 3 as a seed, layer 5 to confirm, and layers 4 and 6 to extend
MergeTrackCollectionsMergeTrackCollectionsmerge collections from track finding into single output collection
GBLRefitterDriverGBLRefitterDriverperforms GBL track refit
TrackDataDriver  
ReconParticleDriver  
LCIOWriter  
CleanupDriver  

Data Collections

Collection NameJava Object TypeCreated ByDescription
EcalReadoutHitsRawCalorimeterHit

evio.ECalEvioReader (data)

ECal Hits in ADC counts 
EcalCalHitsCalorimeterHitrecon.ecal.EcalRawConverterDrivercalibrated ECal Hits
EcalClustersClusterrecon.ecal.EcalClusterICBasicECal Clusters
SVTRawTrackerHitsRawTrackerHit

evio.ECalEvioReader (data)

Si sensor single strip hit information
SVTShapeFitParametersGenericObjectrecon.tracking.RawTrackerHitFitterDriverresult of the ADC vs sample # fit
SVTFittedRawTrackerHitsLCRelationrecon.tracking.RawTrackerHitFitterDriverrelation between SVTRawTrackerHits and SVTShapeFitParameters
StripClusterer_SiTrackerHitStrip1DTrackerHitrecon.tracking.DataTrackerHitDriver1D Si strip clusters
HelicalTrackHitsTrackerHitrecon.tracking.HelicalTrackHitDriver3D SVT hits combining StripClusterer_SiTrackerHitStrip1D hits in axial/stereo layers
HelicalTrackHitRelationsLCRelationrecon.tracking.HelicalTrackHitDriverrelation between HelicalTrackHits and StripClusterer_SiTrackerHitStrip1D
HelicalTrackHitMCRelationsLCRelationrecon.tracking.HelicalTrackHitDriverrelation between HelicalTrackHits and MCParticles
RotatedHelicalTrackHitsTrackerHitrecon.tracking.HelicalTrackHitDriversame as HelicalTrackHits but rotated into SeedTracker tracking frame (x->y,y->z,z->x)
RotatedHelicalTrackHitRelationsLCRelationrecon.tracking.HelicalTrackHitDriver.... but rotated into SeedTracker tracking frame (x->y,y->z,z->x)
RotatedHelicalTrackHitMCRelationsLCRelationrecon.tracking.HelicalTrackHitDriver.... but rotated into SeedTracker tracking frame (x->y,y->z,z->x)
MatchedTracksTrackrecon.tracking.TrackerReconDrivertracks found in the SVT with (d0, phi, omega, tanlambda, z0) parameters
FinalStateParticlesReconstructedParticlerecon.particle.HpsReconParticleDriverthe list of final state particles (electrons, positrons, photons) with 4-momenta.
UnconstrainedV0CandidatesReconstructedParticlerecon.particle.HpsReconParticleDriverelectron-positron pairs with vertex (unconstrained)
BeamspotConstrainedV0CandidatesReconstructedParticlerecon.particle.HpsReconParticleDriverelectron-positron pairs with vertex/momentum required to point back to beamspot at target
TargetConstrainedV0CandidatesReconstructedParticlerecon.particle.HpsReconParticleDriverelectron-positron pairs with the vertex z fixed to the target position and the (x,y) constrained to beamspot
FPGADataGenericObject SVT hybrid information (e.g. temperature)...anything else?
TriggerBankGenericObject trigger information for the event
ReadoutTimestampsGenericObject event timestamp

Java Packages

The  HPS Java Documentation can be used to browse the packages and classes used for physics reconstruction.

HPS Java Reconstruction Packages

Java PackageDescriptionNotesModule
org.hps.evioconverts EVIO raw data to LCIOevio readers for converting EVIO raw data to LCIO eventsevio
org.hps.recon.ecalECal reconstruction utilitiesprimarily for converting from raw data to CalorimeterHits ecal-recon
org.hps.recon.ecal.clusterECal hit clustering frameworkincludes recon clustering and GTP/CTP hardware emulation clusterersecal-recon
org.hps.recon.trackingtrack reconstruction from SVT hitsbased on Seed Tracker from lcsimtracking
org.hps.recon.tracking.gblGBLtrack refitported from C++ to Java; actual Java package now outside HPS Javatracking
org.hps.recon.particlebuilds ReconstructedParticles from tracks and clustersbuilds reconstructed particles from input event collectionsrecon  
org.hps.recon.vertexingvertex reconstructionbased on Billoir vertexing algorithmrecon
org.hps.recon.filteringevent skimming utilities recon

LCSim Packages

These lcsim packages are used extensively within the HPS Java reconstruction code.

Java PackageDescriptionNotesModule
org.lcsim.eventphysics event interfaces (implemented by LCIO)interfaces used extensively in HPS Java Drivers 
org.lcsim.util.loopevent processing loopextends Freehep loop classes for lcsim usage 
org.lcsim.joblcsim job manager which reads lcsim xml steering files  
org.lcsim.lcioJava implementation of LCIO file formatimplements event interfaces 
org.lcsim.recon.tracking.seedtrackerSeed Tracker track reconstruction algorithmbasis for HPS Java tracking 
org.lcsim.utilDriver class for event data processing  
org.lcsim.conditionsdetector conditions system backend  
org.lcsim.geometry, org.lcsim.detectordetector description and geometry classes  

Data Conversion

SVT data banks are handled by an SvtEvioReader and converted into RawTrackerHit and GenericObject collections.

Various modes of EVIO ECal data are converted using the EcalEvioReader.

The following collections are added to the event by the ECal reader.

  • EcalReadoutHits
  • FADCGenericHits
  • EcalReadoutExtraDataRelations
  • EcalReadoutExtraData 

The default builder will also convert and write DAQ config   information, EPICS data, and scaler bank data into the output LCSim events, if these banks are present in the EVIO data.

Track Reconstruction

These are the steps in the HPS Java track reconstruction:

  1. RawTrackerHitFitterDriver converts SVT raw data into fitted hits collection by fitting ADC vs time signals.
  2. DataTrackerHitDriver creates stereo hit pairs from the fitted strip hits.
  3. HelicalTrackHitDriver creates 3D hits (clusters) from input stereo hits.
  4. TrackerReconDriver runs track finding on the 3D hit collection.
    1. Track finding is run multiple times with different tracking strategy files, creating a track collection for each strategy.
  5. The MergeTrackCollections Driver is used to merge the multiple track collections into a single output collection.
  6. The GBLRefitterDriver refits the tracks using GBL.
  7. TrackDataDriver adds a Generic Object collection containing additional information about the track for persistency.

The tracking packages in lcsim form the basis for HPS's tracking algorithms through usage and extension.  Seed Tracker is used for track finding using a set of input tracking strategies.  The track fit from lcsim is further refined using a Java implementation (port) of the GBL C++ algorithm.

ECal Reconstruction

These are the basic steps of the ECal reconstruction:

  1. EcalRawConverterDriver converts RawTrackerHit input collection into CalorimeterHit collection using the EcalRawConverter.
  2. ReconClusterDriver uses the ReconClusterer to create calorimeter Cluster collection from input hits collection.
  3. CopyClusterCollectionDriver copies the clusters (with raw energies) to a different collection with a corrected energy.

The copied collection will be updated with corrected energies in the next step which creates recon particles.

Reconstructed Particles

The ReconParticleDriver creates ReconstructedParticle objects representing the final state particles from the event reconstruction.  These are tracks with matching clusters (when applicable).  It also performs vertex reconstruction and creates a number of candidate particle collections.

The ReconParticleDriver is sub-classed by the actual HpsReconParticleDriver from the steering which adds Moller candidate collections.

  • No labels