Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

NOTE: Once in the flip-flop loop, you must set Se=0 to get back to Mode Select.

Flip-Flop ISR

...

1 (P1 to P2 move) (LB J5)

  • Move to negative closed position P2
  • If error checking is enabled (Ec=1)
    • Calculate drift at previous position P1: Dr=N1-Cs
    • If drift is at or beyond limit (Dr>=Dl)
      • Increment the lower drift violation counter Ld
    • EndIf
  • EndIf
  • Set Flip-Flop ISR 2 (J6) to run on next Input Trip
  • Hold until movement is complete
  • Copy current encoder count (C2) to shadow register Cs
  • Set Df=-1 to signal at negative closed position
  • Re-arm Input Trip (TE=4)
  • Return

Flip-Flop ISR 2 (P2 to P1 move) (LB J6)

  • Move to positive closed position P1
  • If error checking is enabled (Ec=1)
    • Calculate drift at previous position P2: Dr=Cs-N2
    • If drift is at or beyond limit (Dr>=Dl)
      • Increment the upper drift violation counter Ud
    • EndIf
  • EndIf
  • Set Flip-Flop ISR 1 (J5) to run on next Input Trip
  • Hold until movement is complete
  • Copy current encoder count (C2) to shadow register Cs
  • Set Df=1 to signal at positive closed position
  • Re-arm Input Trip (TE=4)
  • Return

Mode 3: Burst

  • Signal state change to 30 (Burst Mode Init)
  • Load Burst speeds (V3)
  • Specify Burst Open ISR (J3) to run on Input Trip
  • Arm Input Trip (TE=TE|4)
  • Signal state change to 31 (Burst Loop)
  • Burst Loop START (forever):
    • Increment heartbeat
    • Hold for 100ms
    • If user sets the soft reset (Se=0)
      • Branch to Fast Close (Mode 5)
    • EndIf
  • Burst Loop END

...

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="bddb5555d10de6ea-f6f6bd9c-421b45fc-b50fa0ca-a70daedb79cb46657c63b55d"><ac:plain-text-body><![CDATA[

Var

Value [step/s(^2)]

[deg/s(^2)]

[rev/s(^2)]

]]></ac:plain-text-body></ac:structured-macro>

VI

5300

1192.5

3.3125

VM

10000

2250

6.25

A

1875000

421880

1171.9

D

1875000

421880

1171.9

...

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="a4e8e00a608d0146-7b8eba6a-48fa4a56-8bd5a079-748127ab2fd3ff14b0cced9b"><ac:plain-text-body><![CDATA[

Var

Value [step/s(^2)]

[deg/s(^2)]

[rev/s(^2)]

]]></ac:plain-text-body></ac:structured-macro>

VI

7500

1687.5

3.3125

VM

10000

2250

4.6875

A

1875000

421880

1171.9

D

1875000

421880

1171.9

...

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="b638b25de24040e3-ed180b28-48dd42d6-85289704-0bae76f693f91137f9e5c3a7"><ac:plain-text-body><![CDATA[

Var

Value [step/s(^2)]

[deg/s(^2)]

[rev/s(^2)]

]]></ac:plain-text-body></ac:structured-macro>

VI

7500

1687.5

3.3125

VM

10000

2250

4.6875

A

1875000

421880

1171.9

D

1875000

421880

1171.9

...

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="71c16ebfb8921bfe-fddf5b03-405f46df-9af199c9-56ee004907a84102d6ddef13"><ac:plain-text-body><![CDATA[

Var

Value [step/s(^2)]

[deg/s(^2)]

[rev/s(^2)]

]]></ac:plain-text-body></ac:structured-macro>

VI

640

144

0.4

VM

2560

576

1.6

A

640

144

0.4

D

640

144

0.4

...