Fundamental Numbers

  • The accelerator provides exactly 910,000 buckets in exactly 0.98 seconds
  • The accelerator patterns repeat on this 0.98s interval
  • The ratio of these two numbers is what gives rise to the 929kHz (~1MHz) machine rate.  Equivalently: accelerator rate is 13/14MHz, bucket period is 14/13us.
  • timing eventcodes arrive ~100us prior to beam
  • The 71428Hz rate is special: common between LCLS1 and LCLS2

Presentation

Recording of Matt's presentation on the timing system.

Link to Matt's presentation.

Patterns

It's a common question to ask what are the rates that the accelerator can generate.  The table below lists the rates that are natural for the accelerator.  These are the periodic rates that repeat exactly at the ~0.98 second period of the timing/MPS system.  Of course, we can generate other rates as well that aren't exactly periodic by doing the sort of thing you described - dropping shots or irregular sequences.  This has been useful for the OPCPA laser development in deciding the exact frequencies they will support.

If a base accelerator rate is chosen (e.g. 33kHz) then other rates having the same prime factors as the accelerator rate are allowed, according to this table:

(python3_env) [weaver@lcls-dev3 lcls2-timing-patterns]$ python lcls/fixed_rate_table.py

 rate, Hz  | factor | factors
 928571          1   1
 464285          2   (2,)
 232142          4   (2, 2)
 185714          5   (5,)
 132653          7   (7,)
 116071          8   (2, 2, 2)
  92857         10   (2, 5)
  71428         13   (13,)
  66326         14   (2, 7)
  58035         16   (2, 2, 2, 2)
  46428         20   (2, 2, 5)
  37142         25   (5, 5)
  35714         26   (2, 13)
  33163         28   (2, 2, 7)
  26530         35   (5, 7)
  23214         40   (2, 2, 2, 5)
  18571         50   (2, 5, 5)
  17857         52   (2, 2, 13)
  16581         56   (2, 2, 2, 7)
  14285         65   (5, 13)
  13265         70   (2, 5, 7)
  11607         80   (2, 2, 2, 2, 5)
  10204         91   (7, 13)
   9285        100   (2, 2, 5, 5)
   8928        104   (2, 2, 2, 13)
   8290        112   (2, 2, 2, 2, 7)
   7428        125   (5, 5, 5)
   7142        130   (2, 5, 13)
   6632        140   (2, 2, 5, 7)
   5306        175   (5, 5, 7)
   5102        182   (2, 7, 13)
   4642        200   (2, 2, 2, 5, 5)
   4464        208   (2, 2, 2, 2, 13)
   3714        250   (2, 5, 5, 5)
   3571        260   (2, 2, 5, 13)
   3316        280   (2, 2, 2, 5, 7)
   2857        325   (5, 5, 13)
   2653        350   (2, 5, 5, 7)
   2551        364   (2, 2, 7, 13)
   2321        400   (2, 2, 2, 2, 5, 5)
   2040        455   (5, 7, 13)
   1857        500   (2, 2, 5, 5, 5)
   1785        520   (2, 2, 2, 5, 13)
   1658        560   (2, 2, 2, 2, 5, 7)
   1485        625   (5, 5, 5, 5)
   1428        650   (2, 5, 5, 13)
   1326        700   (2, 2, 5, 5, 7)
   1275        728   (2, 2, 2, 7, 13)
   1061        875   (5, 5, 5, 7)
   1020        910   (2, 5, 7, 13)
    928       1000   (2, 2, 2, 5, 5, 5)
    892       1040   (2, 2, 2, 2, 5, 13)
    742       1250   (2, 5, 5, 5, 5)
    714       1300   (2, 2, 5, 5, 13)
    663       1400   (2, 2, 2, 5, 5, 7)
    637       1456   (2, 2, 2, 2, 7, 13)
    571       1625   (5, 5, 5, 13)
    530       1750   (2, 5, 5, 5, 7)
    510       1820   (2, 2, 5, 7, 13)
    464       2000   (2, 2, 2, 2, 5, 5, 5)
    408       2275   (5, 5, 7, 13)
    371       2500   (2, 2, 5, 5, 5, 5)
    357       2600   (2, 2, 2, 5, 5, 13)
    331       2800   (2, 2, 2, 2, 5, 5, 7)
    285       3250   (2, 5, 5, 5, 13)
    265       3500   (2, 2, 5, 5, 5, 7)
    255       3640   (2, 2, 2, 5, 7, 13)
    212       4375   (5, 5, 5, 5, 7)
    204       4550   (2, 5, 5, 7, 13)
    185       5000   (2, 2, 2, 5, 5, 5, 5)
    178       5200   (2, 2, 2, 2, 5, 5, 13)
    142       6500   (2, 2, 5, 5, 5, 13)
    132       7000   (2, 2, 2, 5, 5, 5, 7)
    127       7280   (2, 2, 2, 2, 5, 7, 13)
    114       8125   (5, 5, 5, 5, 13)
    106       8750   (2, 5, 5, 5, 5, 7)
    102       9100   (2, 2, 5, 5, 7, 13)
     92      10000   (2, 2, 2, 2, 5, 5, 5, 5)
     81      11375   (5, 5, 5, 7, 13)
     71      13000   (2, 2, 2, 5, 5, 5, 13)
     66      14000   (2, 2, 2, 2, 5, 5, 5, 7)
     57      16250   (2, 5, 5, 5, 5, 13)
     53      17500   (2, 2, 5, 5, 5, 5, 7)
     51      18200   (2, 2, 2, 5, 5, 7, 13)
     40      22750   (2, 5, 5, 5, 7, 13)
     35      26000   (2, 2, 2, 2, 5, 5, 5, 13)
     28      32500   (2, 2, 5, 5, 5, 5, 13)
     26      35000   (2, 2, 2, 5, 5, 5, 5, 7)
     25      36400   (2, 2, 2, 2, 5, 5, 7, 13)
     20      45500   (2, 2, 5, 5, 5, 7, 13)
     16      56875   (5, 5, 5, 5, 7, 13)
     14      65000   (2, 2, 2, 5, 5, 5, 5, 13)
     13      70000   (2, 2, 2, 2, 5, 5, 5, 5, 7)
     10      91000   (2, 2, 2, 5, 5, 5, 7, 13)
      8     113750   (2, 5, 5, 5, 5, 7, 13)
      7     130000   (2, 2, 2, 2, 5, 5, 5, 5, 13)
      5     182000   (2, 2, 2, 2, 5, 5, 5, 7, 13)
      4     227500   (2, 2, 5, 5, 5, 5, 7, 13)
      2     455000   (2, 2, 2, 5, 5, 5, 5, 7, 13)
      1     910000   (2, 2, 2, 2, 5, 5, 5, 5, 7, 13)

Triggering Devices With Beam

To trigger on "every shot" with beam (the equivalent of LCLS1's eventcode 140) use "Mode=FixedRate:1MHz, Destination=Include:DumpSXR" (without the "destination" field I believe you will just get a pure 1MHz trigger).  See table below where DumpSXR destination corresponds to destination bit 4.   It is also important to set the "select" field to "Inclusive" (see below for daq configuration object GUI).

Another important method (used especially for low rate 1,10,100Hz triggers that are in-synch with the beam) is to use an event-code generated by ACR (see Control Sequence Bit for currently supported event codes).  cpo thinks event codes like "SC_SXR BSA" (e.g. 100Hz is eventcode 30) on that page would be commonly used by the hutches. NOTE: We have seen empirically that these event codes do not include a destination setting, so it is necessary to also select destination 4 with the "select" field set to "inclusive" with them.  Matt writes: "Event code 30 will follow the offset used by SXR, but it isn't aware of MPS mitigating the beam rate.  We use the destination 4 filter to also pickup when MPS has inhibited the beam."

Some details:

  • there are 288 bits of "event codes" available
    • some have well-defined meanings, like the low-rate ones described above (in progress)
    • 16 highest bits are hutch specific for sequences (272-287)
    • DAQ readout groups are "extra bits" included at end of timing frame
  • timing frames have "destinations": e.g. bykiks, and bykikh both go to "bsy" dump
  • unlike LCLS1 we will not be using event-codes to understand when bykiks has fired: use destinations instead, in particular DumpBSY for "dropped" or "background" shots
  • some devices reference to "sequencer engineer number" and "sequence bit number" instead of "eventcode".  The formula to convert between the two: eventcode=(sequenceEngine#<<16 | sequencerBit#).

Trigger Destinations and Types

Timing receivers share a common logic module for generating triggers.  They consist of the logical AND of two components, a rate component and a beam destination component.

  • Rate component.
    • sequences / event code
    • ac-line rate (1,5,10,30Hz...) + timeslot mask
    • fixed-rate patterns (1H, 10H, 100H, 1kH, 10kH, 71kH, 1MH)
  • Beam destination component
    • "Dont Care" : beam or no beam, we don't care
    • "Inclusive" : specify a set/mask of destinations to which the beam must be destined; see the table below
    • "Exclusive" : specify a set/mask of destinations to which the beam must not be destined; see the table below.

Note: destination "DumpBSY" corresponds to dropped-shots.

Destination

(electrons)

Bit Number (counting from 0)Mask ValueComment
Injection Laser01Injection laser
DIAG012DIAG0 beam line
DumpBSY24BSY dump
DumpHXR38HXR undulator line
DumpSXR416

SXR undulator line

DumpBSY OR DumpSXR4 and 220

Either BSY dump or SXR undulator line

Need to coordinate hutch sequence-pattern scripts with accelerator sequence-pattern (patterns repeat on 1H marker).

Sequencing Example

See https://github.com/slac-lcls/lcls2/blob/master/psdaq/psdaq/seq/rixexample.sh (high level example for bursts and period patterns) and Integrating Detectors in RIX.  See also Matt's documentation.

In this example the XPM is configured to insert event codes 272-287 into the timing stream.  Four event codes are generated by each sequence engine within the XPM.  The XPM has 4 sequence engines allowing 16 event codes total.

Engine

Event Codes

0256-259
1260-263
2264-267
3268-271
4272-275
5276-279
6280-283
7284-287

A current example for doing this is done by executing:

(first use Matt's high-level utility to generate two event codes that run at 10Hz and 100Hz (periods 91000 and 9100 respectively)

(ps-4.5.26) drp-srcf-mon001:psana$ periodicgenerator -p 91000 9100 -s 0 0 -d '10Hz' '100Hz' >& 10hz_100hz.py

(now program sequence engine 0 and start it using the python code generated above. since we're programming engine 0, the first two event codes will be 272,273 according to the above table)

(this command must be executed on a node that can access the XPM PV's, e.g. drp-srcf-*)

(ps-4.5.26) drp-srcf-mon001:psana$ seqprogram --seq 4:10hz_100hz.py --pv DAQ:NEH:XPM:3 --start
** engine 0 fname 10hz_100hz.py **
descset  None
seqcodes {0: '10Hz', 1: '100Hz'}
Remove -1
idx 2
Removing seq 2
[10, 1, 5, 3, 0, 0, 0, 0, 2, 0, 6, 2048, 0, 0, 0, 3, 2, 1, 3, 3, 0, 0, 2, 0, 6, 908, 0, 0, 0, 1, 5, 2, 0, 0, 0, 0, 3, 2, 1, 0, 8, 0, 0, 2, 0, 6, 2048, 0, 0, 0, 3, 2, 6, 3, 3, 0, 0, 2, 0, 6, 908, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0]
Confirmed ninstr 10
Sequence  found at index 2
desc ['10Hz', '100Hz', '', '', '', '', '', '', '', '', '', '', 'burst', '', '', '']
seqcodes_pv epics:nt/NTTable:1.0 
    string[] labels [EventCode, Description, Rate, Enabled]
    structure value
        int[] EventCode [272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287]
        string[] Description [10Hz, 100Hz, , , , , , , , , , , burst, , , ]
        int[] Rate [11,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
        byte[] Enabled [1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1]
    string descriptor 
    alarm_t alarm
        int severity 0
        int status 0
        string message 
    time_t timeStamp
        long secondsPastEpoch 1683163040
        int nanoseconds 339389440
        int userTag 0

(now query the xpm to see what is running in the 4 sequence engines, each having 4 event codes)

(ps-4.5.26) drp-srcf-mon001:psana$ pvget DAQ:NEH:XPM:3:SEQCODES
DAQ:NEH:XPM:3:SEQCODES 2023-05-03 18:17:31.339    
EventCode Description Rate Enabled
      272        10Hz   10       1
      273       100Hz  102       1
      274                0       1
      275                0       1
      276                0       0
      277                0       0
      278                0       0
      279                0       0
      280                0       0
      281                0       0
      282                0       0
      283                0       0
      284       burst    0       1
      285                0       1
      286                0       1
      287                0       1
(ps-4.5.26) drp-srcf-mon001:psana$ 

Note: the periodicgenerator "repeat" argument specifies the number of repeats of the slowest event-code.

There is a similar "traingenerator" script which you can read about in Matt's documentation.

Visualizing Sequences

This can be done with the same environment used to generate the sequences above.

cd ~tmoopr/daq
source setup_env.sh
seqplot --seq 0:codes.py 3:beam.py --time 2.0

codes.py and beam.py were created with these scripts in the psdaq package:

traingenerator -s 14000 -b 28 -n 32001 -r 2 -d "burst" -t 910000 > beam.py
periodicgenerator -p 91 91000 -s 0 0 -d '10kHz' '10Hz' --repeat 3 --notify > codes.py

The seqplot command brings up this window which shows the two periodic event codes (programmed into the first simulated sequence engine) and the one "beam burst" event code (programmed into the fourth simulated sequence engine):

Sequence Start/Stop

Some technical details from a discussion on March 23, 2023

Since a sequence in a lower-level XPM can "overwrite" sequence eventcodes from a higher-level XPM it is important to be able to stop lower-level sequences.  Matt says one does this by setting DAQ:NEH:XPM:2:SEQENG:3:ENABLE (for example) to 0.  The current example where we have to careful of this is for XPM0 which the laser group uses for eventcodes 272,273,274.

Matt has added a Groups/EventCodes tab to the xpmpva tool.  It shows you the effect of overwriting and which xpm is the current source of eventcodes.

currently the XPM starts sequences on 1Hz boundary (e.g. every 910000 buckets). this slows down the daq scan steps, so support for a second mode is being considered:

(1) current seq mode (only program time-in-seconds or numL1Accepts)
    have to coordinate the start of an accelerator burst with the daq sequence
    - are there two sequences?  one for accelerator and one for daq?
      not clear how much control the accelerator will want (e.g. burst
      all the time for stability, but silke says can damage samples)
    - each step we start one sequence:
      o may also include control of accelerator, but if not
      o have to coordinate the start of the daq seq with accelerator seq
        o acc seq synced to 1Hz marker (everything repeats at 1Hz on
      accelerator side)
    o trickier to sync to rates faster than 1Hz
(2) future-firmware seq mode
    - make the daq enable/disable on a user-defined event code
      o would be faster on the enable since don't have to wait for 1Hz
        marker.  still have to understand the periodicity of the accelerator
    so the user-defined event codes get sent down at the right time
    but it does mean we don't need the slow 1Hz marker.  some things like
    laser electronic delay scanning may be faster than 1Hz so could benefit
    from not using the 1Hz marker.

andor integrates over 10 shots
6 andor images in a step

mode (1):
- program 6 andor-readout-group "L1Accepts".  might be set to the parent
  group now in control.py

the readout group that is counted for the sequence is currently managed
by these lines in control.py.  Currently defaults to the "platform" readout
group which is the primary readout group: need to make this more flexible
so we can change it to the integrating detector readout group:

self.pv_xpm_part_base = pv_base + ':XPM:%d:PART:%d' % (xpm_master, platform)
self.pva.pv_put(self.pva.pvStepEnd, self.readoutCumulative)

Generating a Low Rate Sequence

From Matt.

periodicgenerator --period 1820000 --start_bucket 91000 --description 'Example 0.5Hz sequence' > 0.5Hseq.py
(ps-4.6.1) bash-4.2$ seqplot --seq 0:0.5Hseq.py --time 4.0
eng 0 fn 0.5Hseq.py
0: FixedRateSync(929kHz) # occ(2048)
1: Branch to line 0 until ctr3=43
2: FixedRateSync(929kHz) # occ(888)
3: ControlRequest word 0x1 [0]
4: FixedRateSync(929kHz) # occ(2048)
5: Branch to line 4 until ctr3=843
6: FixedRateSync(929kHz) # occ(488)
7: Branch unconditional to line 0
start, stop: 0,3640000
engine exited request 0  instr 1  returnaddr None  frame 3642047  ccnt [0, 0, 0, 0]

Should show eventcode 272 at bucket 91,000 and every 1,820,000 (2 seconds) after that.

  • No labels