You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 60 Next »

Introduction

The Seacom undersea fibre optic cable plugging East Africa into high speed Internet went live Thursday July 23, 2009. See the BBC and CNN reports. Such a cable should dramatically reduce the cost of bandwidth measured in $/Mbps, and reduce the Round Trip Times (RTT) from >~ 480 ms for a geostationary satellite, down to 200-350ms by using shorter distance terrestrial routes. The minimum RTTs measured from SLAC to African countries in August 2009 is seen below.

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="366e3fb8-23e8-4422-aed4-6f115f3bb09c"><ac:plain-text-body><![CDATA[

MinRTT from SLAC - Aug. 2009 [[xls

^map-africa-minrtt-aug2009.xls]]

]]></ac:plain-text-body></ac:structured-macro>


The striking number of countries in Eastern and Central Africa with minimum RTTs of >400ms is indicative that they were using geo-stationary satellite links. The new cable should also result in less loss and jitter due to the reduction in congestion caused by the increase in capacity.

At the moment the SAT-3/WASC/ fibre has been in place for some time and connects up several countries on the W. Coast of Africa. The Seacom line is not the only fiber-optic cable project on Africa's east coast — others include the Eastern Africa Submarine Cable Systems (EASSY), The East African Marine System (TEAMS) and Lion — but it will be the longest and have highest capacity (1.28 terabytes per second). The EASSY and TEAMS are designed to build out African telecommunications networking, but Seacom is the only line that directly will connect east coast urban areas in Kenya, Madagascar, Mozambique, South Africa and Tanzania to France and India. TEAMS landed in Mombasa early June 2009 and is currently undergoing testing while EASSY and Lion are expected to be operational by mid-2010. Maps of the various fibres is shown below and more details are available here.



For the interior backbones (or backhauls) associated with these landing points, see here.

East Africa contains 300M people, yet less than 3% are Internet users (see Internet usage for Africa). In the past the area has had poor Internet connectivity with mainly geostationary satellite connections to the outside world. In addition most of the traffic between countries made use of expensive international links via Europe and the U.S. rather than more direct connections. There are active movements to create National Research and Education Networks (NRENs) in the area, see for example "Sub-Saharan Africa: An update" by Boubaker Barry. This,  together with direct connections between countries will enable more direct peering. These NRENs in turn are peering with the GEANT network in Europe through the Ubuntunet Alliance. The map below shows the state of African NRENs in 2008. On its right can be seen how the routes traffic from South Africa takes to get to other African Countries in September 2008.

NRENs in Africa

Routing from South Africa to African Countries


It can be seen that NRENs are being created and that in September 2008 most traffic from South Africa to the rest of Africa took costly international links. More details on the routes to African countries from several measurement points around the world measured in Spring 2009 can be seen in a spreadsheet of African routing and inferences.

Initial Results

One would expect with the use of a terrestial fibre rather than a geo-stationary satellite that the minimum RTT woud be reduced from >=400ms to 200-300ms as seen from the US. Also the reduced congestion enabled by the higher speed links should make the average RTT more stable and reduce the packet loss. Below are shown the average RTTs and losses from SLAC on the West Coast of the US to various hosts on the East Coast of Africa. These are all measured using the PingER project's data.

 

acheraarchitects.co.ke

loans.co.ke

elearning.braeburn.ac.ke

Kenya




 

www.micti.co.mz

www.uem.mz

 

Mozambique



 

 

www.muchs.ac.tc

www.6telecoms.co.tz

www.acet.or.tz

Tanzania




It is apparent we do not observe any dramatic reduction in RTT on July 23rd. We also looked at the PingER recorded RTT from ICTP Trieste, Italy to a host in Tanzania in case the routes from SLAC were still using satellite while those from Italy were not. We also looked at the RTT seen from a TENET host in cape Town South Africa to a host in Mozambique. In this case (see below) the RTTs have long been << 400ms so they already were not using geostationary satellite to connect the sites.

www.muchs.ac.tz From Trieste

www.micti.co.mz from Cape Town



Again there is no dramatic reduction. looking at the TENET to www.micti.co.mz RTTs it is apparent that there is a direct (non geo-stationary) satellite connection between the two sites since the RTT << 400ms.

According to the BBC report five institutions are already benefiting from the faster speeds - national electricity company Tanesco, communications company, TTCL, Tanzania Railways and the Universities of Dar es Salaam and Dodoma. we also heard from Alem who was visiting Kenyata University from Ethiopia for a one day conference that "You can get connected and download data like what you can do in Europe."

From SLAC, we pinged hosts at each of these organizations, the Round Trip Time (RTT) results in msec. are shown below: For the # pings with an asterisk the host did not respond to pings so we used synack to probe the web server:

Country

Organization

Host

# pings

Min RTT

Avg RTT

Max RTT

Std dev

Loss

Tanzania

Tanzania railways

www.trctz.com

100

764

790

893

19.5

0%

Tanzania

Tanzania Telecommunications Company

www.ttcl.co.tz

100*

714

721

730

4.3

1%

Tanzania

University of Dar Es Salaam

www.udsm.ac.tz

151

696

711

1130

45

0%

Tanzania

University of Dodoma

www.udom.ac.tz

100*

753

783

845

18

0%

Tanzania

Tanesco National Electric Company

www.tanesco.com

49

12.6

12.997

13.53

0.251

0%

Kenya

Kenyatta University

www.ku.ac.ke

138

650.138

652.36

668.44

1.97

2%

The host www.tanesco.com is probably a proxy located somewhere in the Western US. The other hosts all have minimum RTTs of well over 400ms which indicates they are probably still using a geo-stationary satellite.

When looking at the lack of effects seen initially following the fibre install it is important to understand the caveats.

To enable easier selection and looking for changes for these East African Coastal countries, we added a PingER affinity group (E.AFRICA_COAST) for hosts monitored in Kenya, Mozambique and Kenya. The minimum RTT should be very sensitive to a change in the route from a geo-stationary satellite to a terrestrial fibre link. An example of selecting data sensitive to the E. African fibre connection can be seen in the table of PingER daily minimum RTT data for the group E.AFRICA_COAST. This data is updated daily.

Adding Extra Hosts

We received suggestions from Don Riley of UMD:

I would be watching kdn.co.ke, kenet.or.ke in Kenya. maybe also Univ. of Nairobi.
KDN should change soon, since they're connecting directly to SEACOM and lighting fiber to Uganda and Rwanda. KENET should be first on the university side, I think. and Univ. of Nairobi - typical for lead univ. in capitol to come up first. Similar in TZ and MZ, but looks like you've got the right lead univ's there. Would probably track MORENET and TERNET there.

We have been monitoring kdn.co.ke so we will have a nice history and see the change.

Kenet.or.ke does not respond to pings, using synack the response time to its web server (kenet.or.ke:80) on 7/25/09 was about 667ms.

For the University of Nairobi I Googled it and got www.uonbi.ac.ke however it has an RTT of 78ms from SLAC and appears to be in Virginia USA. Instead I added library.uonbi.ac.ke that is a University of Nairobi host that appears to be in Nairobi. On 7/25/09 it had an RTT of ~ 658ms.

I googled MORENET Mozambique and came up with morenet.mct.gov.mz. However it does not respond to pings. It does respond to synack on port 80 (www) and the response time to a trivial request is ~368ms so it may have already moved over. However GeoIPTool (see http://www.geoiptool.com/en/?IP=morenet.mct.gov.mz) says it's in Buenos Aires which I do not believe. Visualroute's (at http://visualroute.visualware.com/) tests fail. Looking at the traceroute from SLAC and using GeoIPTool to locate the nodes , it appears that on leaving the US the route goes directly from the West Coast of the US (Sunnyvale) through Buenos Aires (node telkomsa.ge9-16.br02.ldn01.pccwbtn.net 152ms) then to Pretoria (rrba-ip-lir-1-pos-1-0-4.telkom-ipnet.co.za 352 ms) and then to Mozambique. This it is not currently using the new fibreoptic cable running South down the E. African coast. Looking at a map of the world's undersea fibre cables in the region may help explain this.


I have added www.ternet.or.tz on 7/25/09 it had a ping RTT of 705ms.

We also added some hosts in Somalia.

Further Results

To assist in the selection of hosts in this region from the pingtable results, we created an affinity group that contains all hosts in Kenya, Mozambique and Tanzania. This makes it much simpler to look at the minimum RTT for just such hosts for the last few days

Uganda should be connected soon. KDN was building the fiber to Uganda and Rwanda. We therefore also set up a group for countries in the UN definition of Eastern Africa to simplify reviewing minimum RTT for all East Africa.

On Aug 2, 2009 following an email from Don Riley who had detected that kdn.co.ke had dropped to 370ms. We were Unfortunately not monitoring kdn.co.ke. However on further investigation we found the RTT from SLAC to acheraarchitects.co.ke (see below) had changed between 14:00 and 17:00 hours 6/1/09 GMT from a steady 716 ms to a steady 325ms. This is exactly what one would expect as the route moves from a GEOS to a terrestrial line. The traceroute from SLAC to Kenya went via ESnet to Sunyvale, then via Level3 to New York and London and thence to Kenya. The RTT between London and Kenya was about 200ms.

On Aug 1, 2009 at about 23:00 hours GMT the RTTs averaged over a day, from SLAC to www.ternet.or.tz changed from about 730ms to about 350ms (see below, note that the RTTs are truncated at about 900ms ). After about half a day it reverted back again. The traceroute when the RTT had reverted back to the high RTT value shows the route going through Telia and Newskies, a satellite services provider. The traceroute when the RTT was low was via ESnet to San Jose where it was picked up by Teleglobe to take the traffic to London and thence to Tanzania where it was passed to Tanzania Telecommunications.

On August 3, 15:00 hours www.ku.ac.ke dropped to about 370ms (see below), the earlier step change from 650ms to 550ms may have been since only one direction of the route was using the terrestrial line. A traceroute after the changeover shows the route going via ESnet to New York and via Level3 onto London, there it is transferred to InterRoute and is carried to Kenya by Seacom and thence to Nairobinet.

acheraarchitects.co.ke

www.ternet.or.tz (RTT truncated at 900ms)

www.ku.ac.ke (untruncated)

www.ku.ac.ke

  • No labels