
How to access HDF5 data from Python

Objective
Libraries
HDF5 file structure
Basic operations
Advanced operations

Check if the HDF5 item is "File", "Group", or "Dataset"
Get information about HDF5 item
Extract time
Operations with CSPad pedestals

How to find the files with CSPad pedestals
How to calibrate CSPad pedestals
Get CSPad pedestal array
Subtract CSPad pedestals

Code examples
Example 1: Basic operations
Example 2: Extract and print the time variables
Example 3: Print entire file/group structure using recursive method
Example 4: Time-based syncronization of two datasets

Objective

Analysis & Applications group works on project - generic framework for analysis of any experimental data. Though this framework is going to be PSANA
universal, most likely it will not be simple. In this page we discuss a simple but flexible approach to analysis of data stored in HDF5 files. It is based on Pyth

 code with extensive exploitation of standard libraries. A few code examples of how to access and process data are presented at the end of this page.on

There are obvious advantages in this approach:

Flexibility; HDF5 file has indexed structure, that means direct access to any data of any file from your code.
Python is a high-level scripting language allows to write transparent and compact code based on well-elaborated standard libraries.
In general, code in works slow comparing to C++, but there are libraries like NumPy written on C++, which solve this problem for Python
manipulation with large arrays.

There is a couple of drawbacks in this approach,

you have to know or learn Python
current version of the library works quite slow with long HDF5 filesh5py

The first issue about is not really a drawback. Basic concept of this high-level language can be learned from scratches for about a couple of days. Python
In a week you will feel yourself as an expert and will enjoy programming on this powerful language. Second issue about slow library is really h5py
annoying, but we hope that authors will account for our comments and its performance can be improved soon.

Below we assume that everything is setup to work on LCLS analysis farm, otherwise see and .Computing (including Analysis) Account Setup

Libraries

Here is a list of libraries which we use in examples below:Python

h5py
NumPy
matplotlib

These libraries can be imported in the top of the -code file, for examplePython

#!/usr/bin/env python
import h5py
import numpy as np
import matplotlib.pyplot as plt

HDF5 file structure

Detailed description of the HDF5 file structure can be found in or web sites. Briefly speaking, its structure resembles the file system directory HDF5 h5py
tree. The top level of the HDF5 tree is a file; file may contain groups and datasets; each group may contain other groups and datasets; each dataset
contains the data objects, which in most cases can be associated with types. Group and file may also have additional parameters, which are called NumPy
as attributes. So, there are three basic type of items in HDF5 file: File, Group, and Dataset. Their names are used as access keys.

Basic operations

https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=94180179
http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=92183280
https://confluence.slac.stanford.edu/display/PSDMInternal/Analysis+Workbook.+Account+Setup
http://docs.python.org/release/2.6.6/
http://code.google.com/p/h5py/
http://numpy.scipy.org/
http://matplotlib.sourceforge.net/
http://www.hdfgroup.org/HDF5/
http://code.google.com/p/h5py/

Basic operations allows to access the dataset records from HDF5. Here we assume that user knows explicitly the names of file and dataset and event
number, for example

 hdf5_file_name = '/reg/d/psdm/XPP/xppcom10/hdf5/xppcom10-r0546.h5'
 dataset_name = '/Configure:0000/Run:0000/CalibCycle:0000/Camera::FrameV1/XppSb4Pim.1:Tm6740.1/image'
 event_number = 5

Open file, get dataset, get array for current event, and close file:

 file = h5py.File(hdf5_file_name, 'r') # 'r' means that hdf5 file is open in read-only mode
 dataset = file[dataset_name]
 arr1ev = dataset[event_number]
 file.close()

The is a object. There are many methods which allow to manipulate with this object. For example, one canarr1ev NumPy

print array shape and content:

 print 'arr1ev.shape =', arr1ev.shape
 print 'arr1ev =\n', arr1ev

Advanced operations

As in previous case we assume that all necessary parameters are defined,

 file = h5py.File(hdf5_file_name, 'r')
 item = file[item_name]

where stands for file, group of dataset.item

Check if the HDF5 item is "File", "Group", or "Dataset"

isFile = isinstance(item, h5py.File)
isGroup = isinstance(item, h5py.Group)
isDataset = isinstance(item, h5py.Dataset)

In this example the standard method returns or in each case, respectively.Python isinstance(...) True False

Get information about HDF5 item

For all HDF5 items:
these parameters are available:

item.id # for example: <GroupID [1] (U) 33554473>
item.ref # for example: <HDF5 object reference>
item.parent # for example: <HDF5 group "/Configure:0000/Run:0000/CalibCycle:0000" (5 members)>
item.file # for example: <HDF5 file "cxi80410-r0587.h5" (mode r, 3.5G)>
item.name # for example: /Configure:0000/Run:0000/CalibCycle:0000/Camera::FrameV1

For Dataset

ds.dtype # for example: ('seconds', '<u4'), ('nanoseconds', '<u4')]
ds.shape # for example: (1186,)
ds.value # for example: (1297610252L, 482193420L)

Get item attributes for File or Group (if attributes available)
In this example the might be a group or fileitem

item.attrs # for example: <Attributes of HDF5 object at 230141696>
item.attrs.keys() # for example: ['start.seconds', 'start.nanoseconds']
item.attrs.values() # for example: [1297608424L, 627075857L]
len(item.attrs)

For example, one of the file attributes is a run number,

run_number = file.attrs['runNumber']

Get the list of daughters in the group

list_of_item_names = group.items()
print list_of_item_names

or convert the group in dictionary and iterate over their key and values,

for key,val in dict(group).iteritems():
 print key, val

Extract time

Time variable is stored in HDF5 as a tuple of two long integer numbers representing the since 01/01/1970 and as a fraction of the seconds nanoseconds
second. Time is usually stored in the group attributes and/or in the data record with name "time", which can be extracted as shown below

from the group attributes

group = file["/Configure:0000"]
time_sec = group.attrs.values()[0]
time_nsec = group.attrs.values()[1]

from the data recordtime

time_dataset = file['/Configure:0000/Run:0000/CalibCycle:0002/Acqiris::DataDescV1/XppLas.0:Acqiris.0
/time']

index = 0 # this is an index in the dataset
time_arr = time_dataset[index] # get the time tuple consisting of seconds and nanoseconds
time_sec = time_arr[0]
time_nsec = time_arr[1]

Operations with CSPad pedestals

Most generic way to subtract the CSPad pedestals is to use , as described in . If calibration is requested in the Translator CsPad calibration in translator Tra
 the output HDF5 file has the CSPad image data with already subtracted pedestals. Otherwise, saves raw CSPad data in HDF5 file. If the nslator Translator

job execution time is not an issue, the pedestals can be subtracted from raw data directly in code, as explained in this section.

How to find the files with CSPad pedestals

https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=40632703
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=96108977
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=40632703
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=40632703
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=40632703

CSPad pedestals are usually calibrated using the "dark" runs. If they were calibrated, the files for appropriate run range, , can be found <run-range>.dat
in the directory
/reg/d/psdm/<INSTRUMENT>/<experiment>/calib/<calib-version>/<source>/pedestals/
If the pedestal file was available at translation time, the dataset
/Configure:0000/CsPad::CalibV1/XppGon.0:Cspad.0/pedestals
is saved in the HDF5 file and can be accessed directly.
One may prefer to calibrate and keep pedestal files in the local directory, as explained below.

How to calibrate CSPad pedestals

If the CSPad pedestals were not calibrated, they can be calibrated, as explained in
the description of the module. Essentially, one need to run the for CsPadPedestals psana - Original Documentation psana cspad_mod.

 module, using command CsPadPedestals
psana -m cspad_mod.CsPadPedestals input-files.xtc
which by default produce two files:

cspad-pedestals.dat – for average values, and
cspad-noise.dat – for standard deviation values.
These files can be loaded in code as explained below.

Get CSPad pedestal array

The file with pedestal values can be read in code as a array:numpy

import numpy as np
ped_fname = '/reg/d/psdm/<INS>/<experiment>/calib/<calib-version>/<source>/pedestals/<run-range>.dat'
ped_arr = np.loadtxt(ped_fname, dtype=np.float32)
ped_arr.shape = (32, 185, 388) # raw shape is (5920, 388)

In this example the pedestal file is loaded from the standard directory. For your own pedestal file the path name should be changed.calib

Subtract CSPad pedestals

Assuming that the CSPad event array and the pedestal array are available,ds1ev ped_arr
the pedestals can be subtracted by the single operation for arrays:numpy

if ds1ev.shape == ped_arr.shape : ds1ev -= ped_arr

Code examples

Example 1: Basic operations

#!/usr/bin/env python

import h5py
import numpy as np

eventNumber = 5

file = h5py.File('/reg/d/psdm/XPP/xppcom10/hdf5/xppcom10-r0546.h5', 'r')
dataset = file['/Configure:0000/Run:0000/CalibCycle:0000/Camera::FrameV1/XppSb4Pim.1:Tm6740.1/image']
arr1ev = dataset[eventNumber]
file.close()

print 'arr1ev.shape =', arr1ev.shape
print 'arr1ev =\n', arr1ev

Similar code plots the dataset as image or histogram using the librarymatplotlib

This operation will only be valid if the CSPad data array is completely filled (all sensors are available) and its shape is equal to (32, 185, 388).
Otherwise, the pedestal subtraction can be done in a loop over available sensors, taking into account the CSPad configuration.

https://confluence.slac.stanford.edu/display/PSDMInternal/Psana+Module+Catalog+-+Old#PsanaModuleCatalogOld-PsanaModuleCatalog-Modulecspadmod.CsPadPedestals
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
http://numpy.scipy.org/
http://numpy.scipy.org/
http://matplotlib.sourceforge.net/

#!/usr/bin/env python
import h5py
import numpy as np
import matplotlib.pyplot as plt

def plotImage(arr) :
 fig = plt.figure(figsize=(5,5), dpi=80, facecolor='w',edgecolor='w',frameon=True)
 imAx = plt.imshow(arr, origin='lower', interpolation='nearest')
 fig.colorbar(imAx, pad=0.01, fraction=0.1, shrink=1.00, aspect=20)

def plotHistogram(arr) :
 fig = plt.figure(figsize=(5,5), dpi=80, facecolor='w',edgecolor='w',frameon=True)
 plt.hist(arr.flatten(), bins=100)

eventNumber = 5
file = h5py.File('/reg/d/psdm/XPP/xppcom10/hdf5/xppcom10-r0546.h5', 'r')
dataset = file['/Configure:0000/Run:0000/CalibCycle:0000/Camera::FrameV1/XppSb4Pim.1:Tm6740.1/image']
arr1ev = dataset[eventNumber]

plotImage(arr1ev)
plotHistogram(arr1ev)
plt.show()
file.close()

Example 2: Extract and print the time variables

#!/usr/bin/env python

import h5py
import time

#---

def print_time(t_sec, t_nsec):
 """Converts seconds in human-readable time and prints formatted time"""

 tloc = time.localtime(t_sec) # converts sec to the tuple struct_time in local
 print 'Input time :',t_sec,'sec,', t_nsec,'nsec, '
 print 'Local time :', time.strftime('%Y-%m-%d %H:%M:%S',tloc)

#---
file_name = '/reg/d/psdm/xpp/xpp22510/hdf5/xpp22510-r0100.h5'
file = h5py.File(file_name, 'r') # open read-only

print "EXAMPLE: Get time from the group attributes:"

group = file["/Configure:0000"]
t_sec = group.attrs.values()[0]
t_nsec = group.attrs.values()[1]
print_time(t_sec, t_nsec)

print "EXAMPLE: Get time from the data record 'time':"

dataset = file['/Configure:0000/Run:0000/CalibCycle:0002/Acqiris::DataDescV1/XppLas.0:Acqiris.0/time']
index = 0
time_arr = dataset[ind]
t_sec = time_arr[0]
t_nsec = time_arr[1]
print_time(t_sec, t_nsec)

file.close()
#--

Example 3: Print entire file/group structure using recursive method

#!/usr/bin/env python
import h5py
import sys

def print_hdf5_file_structure(file_name) :
 """Prints the HDF5 file structure"""
 file = h5py.File(file_name, 'r') # open read-only
 item = file #["/Configure:0000/Run:0000"]
 print_hdf5_item_structure(item)
 file.close()

def print_hdf5_item_structure(g, offset=' ') :
 """Prints the input file/group/dataset (g) name and begin iterations on its content"""
 if isinstance(g,h5py.File) :
 print g.file, '(File)', g.name

 elif isinstance(g,h5py.Dataset) :
 print '(Dataset)', g.name, ' len =', g.shape #, g.dtype

 elif isinstance(g,h5py.Group) :
 print '(Group)', g.name

 else :
 print 'WORNING: UNKNOWN ITEM IN HDF5 FILE', g.name
 sys.exit ("EXECUTION IS TERMINATED")

 if isinstance(g, h5py.File) or isinstance(g, h5py.Group) :
 for key,val in dict(g).iteritems() :
 subg = val
 print offset, key, #," ", subg.name #, val, subg.len(), type(subg),
 print_hdf5_item_structure(subg, offset + ' ')

if __name__ == "__main__" :
 print_hdf5_file_structure('/reg/d/psdm/XPP/xppcom10/hdf5/xppcom10-r0546.h5')
 sys.exit ("End of test")

Example 4: Time-based syncronization of two datasets

#!/usr/bin/env python
import os
import sys
import h5py
import numpy as np

class TwoDatasetSynchronization (object) :
 """Matching elements of two datasets using their time stamps"""
 def __init__ (self, file, Xdsname, Ydsname) :
 """Initialization"""

 self.dsX = file[Xdsname]
 self.dsY = file[Ydsname]
 XTimedsname = get_item_path_to_last_name(Xdsname) + '/time'
 YTimedsname = get_item_path_to_last_name(Ydsname) + '/time'
 self.dsXT = file[XTimedsname]
 self.dsYT = file[YTimedsname]
 self.XTarr = 0.000000001 * self.dsXT['nanoseconds'] + self.dsXT['seconds']
 self.YTarr = 0.000000001 * self.dsYT['nanoseconds'] + self.dsYT['seconds']
 self._nXpoints = self.dsX.shape[0]
 self._nYpoints = self.dsY.shape[0]
 self._indX = 0
 self._indY = 0
 self._tmapXlist = []
 self._tmapYlist = []
 print 'Xdsname =',Xdsname
 print 'Ydsname =',Ydsname

 print 'XTimedsname =',XTimedsname
 print 'YTimedsname =',YTimedsname
 print 'Initialization: datasets X and Y have length =', self._nXpoints, self._nYpoints

 def twoDatasetSynchronizationIterations(self) :
 """Iteration over time indexes and appending of syncronized arrays."""

 while self._indX < self._nXpoints and self._indY < self._nYpoints :

 if self.XTarr[self._indX] == self.YTarr[self._indY] : # Time is the same
 self._tmapXlist.append(self.dsX[self._indX])
 self._tmapYlist.append(self.dsY[self._indY])
 self._indX += 1
 self._indY += 1

 elif self.XTarr[self._indX] > self.YTarr[self._indY] : # Time X > Time Y
 self._indY += 1
 self.printMissingSynchronization()

 else : # Time X < Time Y
 self._indX += 1
 self.printMissingSynchronization()

 def printMissingSynchronization(self) :
 print 'Missing of syncronization for X,Y indexes ',self._indX,self._indY

 def runSynchronization(self) :
 """Executes synchronization and makes the references for synchronized arrays."""
 self.twoDatasetSynchronizationIterations()
 self.Xarr = np.array(self._tmapXlist)
 self.Yarr = np.array(self._tmapYlist)
 print 'Number of synchronized in time X and Y array elements =', self.Xarr.shape, self.Yarr.shape

def get_item_path_to_last_name(dsname):
 """Returns the path to the last part of the item name"""
 path,name = os.path.split(str(dsname))
 return path

def main() :
 """EXAMPLE: Time synchronization of two datasets.

 In this example we open the file, which contains correct dataset "Y" and the dataset with lost records "X".
 We access these arrays and associated time arrays through the class TwoDatasetSynchronization.
 Then we iterate over indexes of these arrays and append the lists of syncronized arrays.
 Program prints the message in case of missing synchronization.
 """

 file = h5py.File('/reg/d/psdm/CXI/cxi80410/hdf5/cxi80410-r0730.h5', 'r')
 Xdsname = '/Configure:0000/Run:0000/CalibCycle:0000/Bld::BldDataFEEGasDetEnergy/NoDetector.0:NoDevice.2
/data'
 Ydsname = '/Configure:0000/Run:0000/CalibCycle:0000/Ipimb::DataV1/CxiDg1.0:Ipimb.0/data'

 synchro = TwoDatasetSynchronization (file, Xdsname, Ydsname)
 synchro.runSynchronization()

#--------------------------------
if __name__ == "__main__" :
 main()
 print('Exit')
 sys.exit ()
#--------------------------------

	How to access HDF5 data from Python

