
Head of repository makes core 2.0, has new services
The head of the repository for rceapp/ now makes the experimental core version 2.0.

Changes

Tasks started with runTask from the shell now inherit the shell's definitions of the C stdio streams stdin, stdout and stderr. printf(), fprintf() et al. 
used from the child task now output to the telnet socket instead of to the in-memory syslog.

If you use the version of Logger() now in RCE::service it too will output to the telnet socket. Modules run with runTask no longer need to initialize 
the logging package.

New services in rce/service (namespace RCE::service):
EnumInfo. A template designed to make it easier to work with enumeration types. See rce/ppi/PortType.hh for an example of how to use 
it.
Logging service.

I've copied classes Logger, LoggerImpl and LogMessage from quarks.
You no longer need to initialize logging in modules run using runTask.
PtyLogger isn't copied, instead there is StderrLogger which is active by default.
Use class LoggingGuard to change the logging implementation or the severity threshold for a block of code.

Notepad. Each instance of Notepad tries to allocate one of the 16 notepad slots available under RTEMS; the class tracks which slots are 
in use. Each slot is a 32-bit value inside the task control block which therefore varies from task to task without the extra overhead of 
RTEMS task-variables.
Once. Runs an initialization function exactly once no matter how many tasks are competing for it.
Semaphore (Semaphore-new.hh). A re-implementation of the old Semaphore class.
SemaphoreGuard. Makes sure that a Semaphore is held only as long as the guard instance exists. Used to guarantee that a Semaphore 
is released when a block of code is exited in many places (throws, returns, gotos).
StringBuffer. Assembles a dynamically allocated C-string from smaller pieces, with formatting.
readAll(), writeAll() (rwall.hh). Used with devices like sockets which may exit from read() and write() without transferring all the data you 
asked them to (even when no error occurs).
Thread (Thread-new.hh). An abstract base class for managing tasks; you derive a class and implement the virtual function body(). New 
Threads inherit the C stdio streams from the creating task. If that task is also managed by Thread the new Thread can inherit the logging 
implementation and RTEMS priority as well. Class Thread uses a Notepad slot to keep a pointer to the Thread instance used to manage 
a task; the slot can be read with the static member function currentThread() even in code that is not in a Thread-derived class, e.g., 
library code. In your derived classes you can place extra data members which gives you thread-local storage without the overhead 
incurred by RTEMS' task variables. If your code fails to catch a C++ exception even at top level then the underlying RTEMS task is 
suspended.


	Head of repository makes core 2.0, has new services

