
myana user guide
In this page:

Introduction
The data file format: xtc
The pdsdata library
myana.cc an example C++ program to extract information from xtc file

More examples
Configuration and Event Data retrieval functions:

Acquiris digitizer
Image data
Other functions:

Further analysis help

Introduction

LCLS Data Analysis frameworks are under development. The currently supported approaches for analysis of LCLS data are:

myana — A C++ program to analyze an xtc file. Provided (and used) by the DAQ group. How to set up your own myana executable is explained
in the DAQ section ."A Simple Online Analysis Example"
pyana — A python-based analysis framework. Pyana User Manual
PSAna — A C++-based analysis framework. Psana User Manual - Old

This document attempts to explain the names and functions found in the myana code and give some working examples on how to set up your analysis
software. And we try to explain the structure of the data file and how to extract useful information from your data.

In several of these examples, we fill root histograms or NTuples. For more information on root, see .http://root.cern.ch

If you have questions or requests related to this user guide, feel free to send me an email (ofte at slac.stanford.edu).

The data file format: xtc

The data recorded from the LCLS experiments are stored in xtc (eXtended Tagged Container) files. This online format consists of "datagrams", structures
that have fileds like , , source () and (size). Xtc files are not indexed and does not provide random access. The data file contains TypeId Damage Src extent
only data, no metadata, so you depend on the pdsdata library (or similar) to make sense of the files. The only way to read it is using a special iterator
(XtcIterator) and read the events seqencially, one shot at a time. The application does this loop for you, and you can customize the myana event()
function to read out the information you want from the xtc file.

You can explore the contents of an xtc file by using the or utilities:xtcreader pyxtcreader

pslogin ~ > xtcreader -f myxtcfile.xtc | less
pslogin ~ > pyxtcreader myxtcfile.xtc | less

Reading through the output, you may see sections describing the various transitions in datataking. Look for these "headings" in the text output:

Configure transition
BeginRun transition
BeginCalibCycle transition
Enable transition
L1Accept transition — This is the event data. Each event starts with "L1Accept transition:". From the text that follows, you can get an idea of what
detector data is in the xtc file.

A new tool to list the contents of the file:

pslogin ~ > xtcsummary.py

lists all detector and epics information found in Configure and L1Accept (event data) sections, and lists number of events per calibration cycle. Can be
helpful when putting together your myana or pyana analysis script. Example .output

You can analyze the xtc data with the offline tools, and . You also have the option of using the data format (hierarchical data format 5), myana pyana hdf5
but you will have to wait for the -> translation which may take some time. Also, there is no support for analysis by the offline group quite yet. xtc hdf5 hdf5 h

 will be the standard offline LCLS data format, and tools are under development for analyzing these files. More about data formats and where to find the df5
experiment data files, see Analysis Workbook. Data Formats

The librarypdsdata

https://confluence.slac.stanford.edu/display/PCDS/A+Simple+Online+Analysis+Example
https://confluence.slac.stanford.edu/display/PCDS/Pyana+User+Manual
https://confluence.slac.stanford.edu/display/PSDMInternal/Psana+User+Manual+-+Old
http://root.cern.ch
https://confluence.slac.stanford.edu/download/attachments/94833586/output_xtcsummary.txt?version=1&modificationDate=1291053237000&api=v2
https://confluence.slac.stanford.edu/display/PSDMInternal/Analysis+Workbook.+Data+Formats

See also .pdsdata Reference Manual

Myana uses the pdsdata library to access the datagrams in the xtc files, thus in this context defines the data structure. .pdsdata pds = photon data system
In your analysis directory you'll find it in . The header files are in the top level directories of each package, and the implementation release/pdsdata/
files are in the src directory of each package. Here's very briefly what the library contains:

package description

ipimb Intensity position, intensity monitor board (IPIMB)
Four diodes positioned around the beam measure scattered X-rays. Based on the output voltage from the four sensors, we can determine pulse
intensity and position of the beam. Note, that the lusi package contains methods to get feature-extracted / background subtracted output from the
IPIMB.

encoder SXR SLE Info (Laser Mirror Position Encoder)

pnCCD for the two CCD detectors used by the CAMP collaboration

acqiris DAQ interface to the Acqiris digitizer hardware. Waveform data.

camera General structure to read camera frames, configurations, feature extracted info

evr EVent Receiver (event code / beam code)

opal1k Specialized interface for Opal1000 camera. Depends on the camera package

pulnix for Pulnix TM6740CL monochrome camera used to read out the YAG screens

control utility for DAQ control, PV (process variable) control and monitoring

xtc This package defines all the datagrams for the xtc file.

epics DAQ interface to epics (process variables (PV))

bld DAQ interface to BeamLine Data, e.g. FeeGasDetEnergy, EBeam, PhaseCavity

 princeton DAQ interface to the Princeton camera

fccd LBNL/ANL Fast CCD monochrome camera

cspad CXI CsPad detector

lusi LCLS Ultrafast Science Instruments Configs for diode, ipm, pim.

app Xtc and Epics readers

myana.cc an example C++ program to extract information from xtc file

This example fetches data for each event and writes it to a root histogram and stores the histogram in a root file. You may want to store your data
differently, e.g. one histogram for each event, or everything in a root ntuple for further processing. Or you can write some other format that you'd like to
work with (ascii file, ...).

myana.cc - example code that makes a simple averaging histogram
main.cc - defines the functions used by myana.cc

myana_morefeatures.cc - example code that does a little more than myana.cc
examples/myana_cspad.cc - example code to read out data from the CsPad XPP detector.

The examples above are meant to show you how you can make your own code. With different experiments using different hardware and having different
goals, these examples might not apply to your particular experiment / datafile. If so, you'll need to search the main code and libraries a bit to find
something more suitable. Here's a brief description of the functions of the myana.cc example and main.cc:

myana.hh and :myana.cc

This is the "user analysis module". This is where you fill in your own code to extract the information that want from your experiment's xtc file. This you
module contain only the following functions:

beginjob() // called at the beginning of an analysis job. You can for instance book histograms here.
beginrun() // called at the beginning of a run (the analysis job might analyze several runs)
begincalib() // called for each calibration cycle
event() // this is where you fetch, process and store information about each event (shot).
endcalib()
endrun()
endjob()

https://confluence.slac.stanford.edu/display/PSDMInternal/pdsdata+Reference+Manual
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=77201724
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=90179582
https://confluence.slac.stanford.edu/download/attachments/94833586/myana.hh?version=1&modificationDate=1286473704000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana.cc?version=5&modificationDate=1286814763000&api=v2

In the example, a profile histogram is booked in and voltage vs. time is filled in each event. The profile histogram displays the average value beginjob()
of all events.

main.hh and main.cc

This is the main control of the analysis, but you should avoid editing this file. When all the utility functions (in main) and user functions (in myana) have
been read, is executed and controls the flow of the analysis. For each xtc file it callsmain()

anafile(xtcname, maxevt, skip, iDebugLevel);

which uses a special iterator to loop through all the datagrams in the file, and makes sure to execute the and functions that you beginjob() event()
implemented in myana.cc.

All the functionality needed to get data from the xtc file is (or should be) defined in main.cc and in the files it includes (including the pdsdata library). You
just need to call the appropriate functions from your myana.cc to extract the information you need from the file. Get an uppdated list of all the available
functions by looking at main.hh (implementations are in main.cc).

More examples

myana_morefeatures.cc
This version of the "user analysis module" shows how to obtain some more information from the xtc file:

beginjob():
we book a profile histogram for AMO Ion Time-of-flight (AmoITof) waveform data, and also five regular histograms to fill with
single event data from the first five events. To do this we need some information about the AmoITof configuration, which is
obtained using the getAcqConfig(). This gives us the number of channels that were used, number of samples and sampling
intervals, all needed to book the histogram.
also a constant-fraction histogram is booked for AmoITof. This has it's own fill function, as we shall see from the event()
function.
For the Electron Time-of-flight detector (AmoETof), we similarly get the configuration data and make one profile histogram for
each channel used.
Also get config information about the Magnetic bottle electron spectrometer (AmoMbes).
A Princeton camera and a fast CCD (FCCD) was also in use. These have their own getConfig functions: getPrincetonConfig(
DetInfo::SxrBeamline, ...) and getFccdConfig(SxrFccd, ...).
In beginrun() we get the config info from AmoITof again, to check if it changed between runs in the same job.

event():
fills the histograms booked at the beginning of the job: getAcqValue() gets the data from a given detector for each event. The
main program is already keeping track of which event we're processing at the time. The constant-fraction histogram is filled by
the function fillConstFrac(), defined in main.cc. This histogram is filled with the boundary position each time the pulse crosses
the threshold,
the rest of uses a lot of get-functions to show how to use some of these. Generally, they all give you values through event()
scalar or array variables passed as arguments to the functions. The example doesn't show what you would use this information
for, but you might already know that

myana_etof.cc
More histogram building for ETof Acquiris

myana_itof.cc, myana_bin.cc
More ITof Aquiris averaging, and more about binning

myana_mbes.cc
Magnetic electron bottle spectrometer (Mbes) Acquiris, time resolved binning

myana_esort.cc, myana_bin.cc
Energy binning for Mbes Acquiris

ACQexp.cc, , (or for parallel processing)EXSavg.cc EXSavgOMP.cc
Opal image processing, projections, image export

examples/myana_tuple.cc
Example of how to store several variables in a root NTuple for further processing (histogramming, correlation studies etc.).

examples/myana_cspad.cc, , examples/CspadTemp.cc examples/CspadTemp.hh
CsPad image

Configuration and Event Data retrieval functions:

The following contains a few lines of explanation for some of the functions defined in main.
But first some general remarks:

Most of the functions return 0 if it was a successful function call, any other number means it failed.
Values are obtained through the arguments of the function calls. E.g. declare an array in your myana.cc, and will getXXXValue(&myarray[0])
fill the array for you.
Enums: Several of the functions can be used to extract data from several of the detectors. Which detector is specified by an enum (named
constant integers). You are encouraged to use the names instead of the numbers, in case the underlying order changes in a new version of the
program.

https://confluence.slac.stanford.edu/download/attachments/94833586/main.hh?version=1&modificationDate=1286474725000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/main.cc?version=1&modificationDate=1286474718000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_morefeatures.cc?version=1&modificationDate=1286474887000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_etof.cc?version=1&modificationDate=1286814800000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_itof.cc?version=1&modificationDate=1286814817000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_bin.cc?version=2&modificationDate=1286814793000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_mbes.cc?version=1&modificationDate=1286814821000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_esort.cc?version=1&modificationDate=1286815434000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_bin.cc?version=2&modificationDate=1286814793000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/ACQexp.cc?version=1&modificationDate=1286814777000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/EXSavg.cc?version=1&modificationDate=1286814784000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/EXSavgOMP.cc?version=1&modificationDate=1286814788000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_tuple.cc?version=1&modificationDate=1286580530000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/myana_cspad.cc?version=1&modificationDate=1286580143000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/CspadTemp.cc?version=1&modificationDate=1286580163000&api=v2
https://confluence.slac.stanford.edu/download/attachments/94833586/CspadTemp.hh?version=1&modificationDate=1286580171000&api=v2

Acquiris digitizer

int getAcqConfig(AcqDetector det, int& numChannels, int& numSamples, double& sampleInterval);

Fetches the configuration information for any of the Acquiris devices. Returns 1 if the requested detector does not exist, and 2 if it was not in use. Tells you
the number of channels used for this device, the number of samples collected and the sample interval. This is typically done in the or beginjob() beginr

 functions.un()

int getAcqValue(AcqDetector det, int channel, double*& time, double*& voltage);
int getAcqValue(AcqDetector det, int channel, double*& time, double*& voltage, double& trigtime);

Fetches waveform data from any of the Acquiris devices. Fills your arrays with the waveform time and voltage, and optionally gives you the trigger time.
This should be called from within the function.event()

In the myana.cc example, we fetch data from the AmoITof device (AMO Ion Time-of-flight).
Other Acquiris devices (see main.hh for an up-to-date list):

AMO:
 AmoIms - ion momentum spectrometer (2 detectors, 7 channels)
 AmoGasdet - gas detector (in the Front End Enclusure)
 AmoETof - electron time-of-flight (5 detectors)
 AmoMbes - magnetic bottle electron spectrometer
 AmoVmiAcq - (Vmi = Velocity map imaging)
 AmoBpsAcq - (Bps = Beam position screen)
 Camp - for the CAMP experimental setup
SXR:
 SxrBeamlineAcq1
 SxrBeamlineAcq2
 SxrEndstationAcq1
 SxrEndstationAcq2

Image data

There are several getters for fetching image data from the xtc file. Depending on which camera was in use, one of these should be appropriate:

Opal1000 camera:
 (an alias getOpal1kValue is provided for backward compatibility)getFrameValue

Pulnix6740CL camera:
 (an alias getTm6740Value is provided for backward compatibility)getFrameValue

FrameDetector (general):

int getFrameConfig (FrameDetector det);
int getFrameValue(FrameDetector det, int& frameWidth, int& frameHeight, unsigned short*& image);

Gives you the width and height (in pixels) of the image, and a pointer to the start of the pixel array of a Pds::Camera::FrameV1 object. Specify the
detector (using an appropriate enum).

Available frame detectors:
 AMO:
 AmoVmi - velocity map imaging
 AmoBps1 - beam position screen
 AmoBps2 - beam position screen
 SXR:
 SxrBeamlineOpal1
 SxrBeamlineOpal2
 SxrEndstationOpal1
 SxrEndstationOpal2
 SxrFccd
 XPP:
 XppSb1PimCvd
 XppMonPimCvd
 XppSb3PimCvd
 XppSb4PimCvd

XPP CsPad detector:

 namespace Pds { namespace CsPad { class ConfigV1; }}
 int getCspadConfig (Pds::DetInfo::Detector det, unsigned& quadMask, unsigned& asicMask);
 int getCspadConfig (Pds::DetInfo::Detector det, Pds::CsPad::ConfigV1& cfg);

 namespace Pds { namespace CsPad { class ElementV1; }}
 int getCspadQuad (Pds::DetInfo::Detector det, unsigned quad, const uint16_t*& pixels);
 int getCspadQuad (Pds::DetInfo::Detector det, unsigned quad, const Pds::CsPad::ElementV1*& data);

Gives you a pointer to the first position in the array of pixel data from the XPP CsPad detector (or alternatively you can get a pointer to the Pds::
CsPad::ElementV1 object itself).
For an example of how to draw an image as a 2D root histogram, see the example.myana_cspad.cc

Fast CCD camera:

 int getFccdConfig(FrameDetector det, uint16_t& outputMode, bool& ccdEnable,
 bool& focusMode, uint32_t& exposureTime,
 float& dacVoltage1, float& dacVoltage2, float& dacVoltage3, float& dacVoltage4,
 float& dacVoltage5, float& dacVoltage6, float& dacVoltage7, float& dacVoltage8,
 float& dacVoltage9, float& dacVoltage10, float& dacVoltage11, float& dacVoltage12,
 float& dacVoltage13, float& dacVoltage14, float& dacVoltage15, float& dacVoltage16,
 float& dacVoltage17,
 uint16_t& waveform0, uint16_t& waveform1, uint16_t& waveform2, uint16_t& waveform3,
 uint16_t& waveform4, uint16_t& waveform5, uint16_t& waveform6, uint16_t& waveform7,
 uint16_t& waveform8, uint16_t& waveform9, uint16_t& waveform10, uint16_t& waveform11,
 uint16_t& waveform12, uint16_t& waveform13, uint16_t& waveform14);

Configures the information from the Fast CCD. Fills arguments with values depending on how the image/waveform data were taken.

 int getFrameValue(FrameDetector det, int& frameWidth, int& frameHeight, unsigned short*& image);

Fetches the FCCD image data. Specify the detector (only SxrFccd is available as of 2012).

PnCCD camera (used by the CAMP collaboration):

 int getPnCcdValue (int deviceId, unsigned char*& image, int& width, int& height);

This camera has 4 links, each link provides a 512 x 512 x 16 bit image. This function combines the four images to a single 1024 x 1024 x 16 bit
image.

 can be PnCcd0 or PnCcd1, width and height are the number of pixels in each direction.deviceId

https://confluence.slac.stanford.edu/download/attachments/94833586/myana_cspad.cc?version=1&modificationDate=1286580143000&api=v2

Princeton camera:
To get the image data (array of unsigned short), use , and to get other information, like the image size, camera exposure, getPrincetonValue
temperature etc, use and :getPrincetonConfig getPrincetonTemperature

int getPrincetonConfig(Pds::DetInfo::Detector det, int iDevId,
 int& width, int& height, // image width and height in pixels
 int& orgX, int& orgY, // 0,0
 int& binX, int&binY); // 1,1

int getPrincetonValue(Pds::DetInfo::Detector det, int iDevId,
 unsigned short *& image); // pointer to first pixel element

int getPrincetonTemperature(Pds::DetInfo::Detector det, int iDevId,
 float& temperature);

fetches the configuration and data from the camera. is there to check the temperature of the camera at the time of getPrincetonTemperature
data taking (not necessarily available for every shot).

Other functions:

Several other functions are available to get information from other monitors around the experimental setup. They may or may not be of importance to your
data quality...

Ipimb detector (Intensity Position, Intensity Monitor Board)

 int getIpimbConfig(Pds::DetInfo::Detector det, int iDevId);
 int getIpimbVolts(Pds::DetInfo::Detector det, int iDevId,
 float &channel0, float &channel1, float &channel2, float &channel3);

Measures intensity and position of the beam from scattered X-rays.

Encoder detector

 int getEncoderConfig (Pds::DetInfo::Detector det, int iDevId);
 int getEncoderCount(Pds::DetInfo::Detector det, int iDevId, unsigned int& encoderCount);

Position of mirrors (SXR)

DiodeFex (Diode feature extraction)

 int getDiodeFexConfig (Pds::DetInfo::Detector det, int iDevId, float* base, float* scale);
 int getDiodeFexValue (Pds::DetInfo::Detector det, int iDevId, float& value);

Ipm detector Fex (Ipm feature extraction)

 int getIpmFexConfig (Pds::DetInfo::Detector det, int iDevId,
 float* base0, float* scale0,
 float* base1, float* scale1,
 float* base2, float* scale2,
 float* base3, float* scale3,
 float& xscale, float& yscale);
 int getIpmFexValue (Pds::DetInfo::Detector det, int iDevId,
 float* channels, float& sum, float& xpos, float& ypos);

Front end enclosure Gas detector

 int getFeeGasDet (double* shotEnergy);

Gives you the shot energy to the array .shotEnergy[4]

Electron beam monitor

 int getEBeam(double& charge, double& energy, double& posx, double& posy,
 double& angx, double& angy);
 int getEBeam(double& charge, double& energy, double& posx, double& posy,
 double& angx, double& angy, double& pkcurr);

Gives electron beam values for each of these doubles. The measured charge of the beam (in nC),
the measured energy of the beam (in MeV), the 2D position of the beam (in mm) away from the origin
(nominal beam position), and 2D angular position (in mrad) off the assumed direction. and the
pkcurr = current? in (Amps)

Phase cavity montior

 int getPhaseCavity(double& fitTime1, double& fitTime2, double& charge1, double& charge2);

Gives you the phase cavity fit time (low and high?) and charges (before and after?).

Event Receiver counter

 int getEvrDataNumber()

number of Fifo pulses associated with this shot (usually 1 or 2). For each of these there is EvrData:

Event Receiver data

 int getEvrData(int id, unsigned int& eventCode, unsigned int& fiducial, unsigned int& timeStamp);

eventCode tells you something about the beam quality of this pulse. Usually the event code is 140, meaning electrons were produced upstream
(beam was on). It does not tell you about the photon status.
fiducial is the higher timestamp of the pulse (end time)
timeStamp is the lower timestamp of the pulse (start time)

EPICS values (Process variables)
Get integers, floats, strings from any EPICS channel (PV = process variable)

 int getPvInt (const char* pvName, int& value);
 int getPvFloat (const char* pvName, float& value);
 int getPvString (const char* pvName, char*& value);

Further analysis help

CSPad analysis page

https://confluence.slac.stanford.edu/display/PSDMInternal/CSPAD+myana+analysis

	myana user guide

