
Things to know while on-call for Data Processing

Task of the Data Processing on-call expert
Data Organization
Different types of failures

Transient failures
Infrastructure failures
Permanent failures
Other failures

Everything to know about the Rollback
How to rollback
Rolling back substreams
When to rollback
The dontCleanUp file
The run lock
HalfPipe locks
findChunks
The throttle lock
Suspending jobs
Skipping events
Skipping events when Gleam segfaults
Re-trying FASTCopy ingestion or ProcessSCI

Useful resources
Other things you may want to know

setL1Status task
setL1Quality task
How to contact SCCS
Log Watcher Messages
cancelProcessInstance
Host or host group is not used by the queue.
Red question marks in display
Multiple lines for run in a given delivery
Stuck processes
Repiping
How To Fix common FASTCopy problems
Batch commands
Shift sign up
Useful L1Proc links (these are designed to keep you from waiting for the entire L1Proc history to be retrieved ... which could be 10 min
and up).

Task of the Data Processing on-call expert

Monitor L1Proc and halfPipe: Every time a appears on the , next to the L1Proc or halfPipe processing status bar, try to red cross Data Processing page
resolve the failure. We are not on-call for ASP/GRB search (The ASP expert - currently Jim Chiang (jchiang{at}slac) - should be emailed (not paged) for
these failures. The ASP expert is listed on the page.) and we are definitely NOT on-call for infrastructure problems (can't see monitoring plots, How to Fix
etc.). Despite not being on-call for these issues, we will often fix issues that arise if simple (i.e. just a rollback). If you get paged for something that is not
under your responsibility, don't try to fix it: forward the message to the appropriate people and report everything to the OpsProb mailing list (opsproblist{at}
glast2.stanford.edu).

Familiarize yourself with understanding the page by reading through the . It is a good starting point for understanding the Pipeline-II Pipeline-II User's Guide
general organization of the pipeline and the tools needed to track down problems.

It may be good to look at the () to see the interdependencies of task chart note: this one is in the Dev database and is old and out of date, needs updating
tasks ("tasks" defined in). "Success" dependency means that a process needs to successfully complete in order for the dependent Pipeline-II User's Guide
process to continue, while "All Done" means that even failed processes will result in the dependent process continuing.

Watch the and look for L1Proc/HalfPipe related tasks (doChunk, doCrumb, etc). Default rule of thumb of time is to use last 2 hours, because Usage Plots
more than that will not give enough fidelity in the plot. If you see a series of points that make a flat line for an extended period of time (anything over 1/2
hour is suspect but mergeReconCunks can take an hour or two), it may indicate problems with the pipeline.

Data Organization

There are four main categories of data organization. At the top, there is the "Delivery", which is the data that is sent down from GLAST. Completely
unrelated are the "Runs", which are time-segments determined by GLAST. A delivery can consist of a part of a run, many runs, or pieces of runs - there is
no particular order that is guaranteed within a delivery with regards to a run. Runs (or parts of the run contained in a delivery) are broken into "Chunks",
which are always contiguous blocks of data. Chunks are further broken down into "Crumbs", which are also contiguous.

When looking at files or directories, run numbers are typically prefixed by an "r", chunk numbers with an "e", and crumb numbers with a "b".

Different types of failures

There are 3 main type of failures, and should be handled differently.

Transient failures

https://confluence.slac.stanford.edu/download/attachments/25330226/FailedRun.png?version=1&modificationDate=1235588203000&api=v2
http://glast-ground.slac.stanford.edu/DataProcessing/summary.jsp
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=9961546
http://glast-ground.slac.stanford.edu/Pipeline-II
https://confluence.slac.stanford.edu/display/ds/Pipeline+II+User%27s+Guide
http://glast-ground.slac.stanford.edu/Pipeline-II/taskout.jsp?task=1378340&gvOrientation=LR&dataSourceMode=Dev
https://confluence.slac.stanford.edu/display/ds/Pipeline+II+User%27s+Guide
http://glast-ground.slac.stanford.edu/Pipeline-II/JobProcessingStats.jsp

afs hiccup (can't read from/write to a resource located on an afs disk)
nfs hiccup (can't read from/write to a resource located on an nfs disk)
LSF hiccup (an lsf batch machine crashes or is rebooted)
lost Data Base connection : MOOT, Calibration database , or more rarely on Oraclelog
recon segfaults for no apparent reason (nothing in logfile)
Pipeline deadlock

How to recognize transient failures: they usually affect only one single job (disk or DB failures), or a small number of jobs all on the same machine (LFS
failure). If a process complains about a missing file but the file exists, or gets a read error after opening a file, it's probably a disk server hiccup. If the log
file (linked from the pipeline web client) ends suddenly, without the usual LSF postlog, the batch host probably crashed. There will probably be several jobs
failing the same way at the same time.

What to do in case of transient failures: rollback the affected process(es) when possible (see below for the rollback procedure). Look for the
dontCleanUp file and check the (see below) (). If recon segfaults for no apparent reason, email Heather (general emergency Log Watcher check for what?
contacts are on the page) before the rollback, including a link to the log file, which will tell them where the core file is. For pipeline deadlocks, How to Fix
email the Pipeline Expert (currently Brian) and include a link to the process instance.

Transient failures are rare lately. For the last couple of months, most failed processes are automatically retried once. This usually fixes transient issues,
so usually when there's a failure it indicates an actual problem.

Bad merges: If a process that's merging crumb-level files into chunks or chunks into runs can't find all of its input files, it won't fail. See the "dontCleanUp"
section below. Processes downstream of such a merge may fail because they are trying to use different types of input files (e.g., digi and recon) and the
events don't match up because some are missing from one file and not the other. Then you need to roll back the merge even though it "succeeded" the
first time.

Infrastructure failures

single batch host is killing several jobs ('rogue' LSF host)
group of batch hosts crashed or went offline
afs crashed on one of the host machines
scratch disk is full on one or more of the host machines - see what to do (here This is a log of a conversation, probably posted from the OpsLog,

)should be made into a child page
A staging disk is full ()need instructions on how to check xroot files
/nfs/farm/g/glast/u41 or /nfs/farm/g/glast/u28 is full

How to recognize infrastructure failures: they usually affect a large number of jobs, either on the same LSF host or on different LSF hosts.

What to do in case of infrastructure failures: these failures involve a large number of people to be taken care of (the infrastructure expert on-call and
often also the SCCS), so for the time being e-mail the appropriate on-call expert (see L1 shift schedule -) and need to get link to new one once it's ready
the opsprob list if you think that one of those failures might be happening during the night (if in doubt, e-mail anyways).

Permanent failures

G4 propagator error. If recon dies complaining about g4propagator, we can't fix it. If this happens, email Heather (heather625{at}gmail) and
 (and possibly Warren (focke{at}slac) and Maria Elena (monzani{at}slac)). Include a link to the log file, which will tell Anders (borgland{at}slac)

them where the core file is.
Overlapping chunks. If findChunks complains about overlapping chunks, tell Steve Tether; if trending merges complain, tell datamonlist@glast2.

. Rollback won't help.Stanford.EDU
Deliveries arriving too closely will mangle the . The underlying processes are fine, but email obsproblist{at} , Steve display glast2.stanford.edu
Tether () or Jim (jchiang{at}slac) to fix the display. ()need e-mail Need instructions for this added to the HTF FC Incoming page
Digitization crashes. Sometimes we get a bad event and have to skip it. Instructions for that are in the rollback section below.

How to recognize permanent failures: besides those 2 cases, everything that doesn't get fixed after a rollback is by definition a permanent failure.

What to do in case of permanent failures: contact the appropriate people above, if you are sure you know what happened. Otherwise, e-mail the
opsprob list and the appropriate on-call expert (see L1 shift schedule -). If there is another part of the run waiting, the run lock (see below) will have to link
be removed by hand; e-mail unless you're really sure of what you're doing.

Other failures

This is a list of failures that don't really fit into the other major three categories

Too few events in the run, or gaps - can lead to too few events in the magic7 file (). Try to copy the /nfs/farm/gexample log file of an FT2 failure
/glast/u28/stage/XXX/magic7_XXX.txt (where XXX is the delivery number) to /nfs/farm/g/glast/u28/stage/YYY/magic7_YYY.txt (where YYY is the
delivery where fakeFT2 failed ... remember to change XXX to YYY on the magic7 file name). Then rollback fakeFT2. If this fails, email Giacomo
Vianello () for additional information regarding problems with FT2.need e-mail

See of FT2 failure due to a very small chunk containing only 1 crumb.opsprob discussion

Everything to know about the Rollback

A rollback is essentially a restart of the stream or substream. It will re-run a particular process and all processes that depend on its output.

How to rollback

You can roll back from the pipeline . The entire stream can be rolled back by clicking "Rollback Stream" at the top, or individual streams in the front end
main stream can be rolled back by selecting the pink boxes under "Stream Processes" and clicking "Rollback Selected".

https://confluence.slac.stanford.edu/download/attachments/25330226/calibDB_hiccup.txt?version=1&modificationDate=1219394765000&api=v2
http://glast-ground.slac.stanford.edu/ISOCLogging
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=9961546
https://confluence.slac.stanford.edu/download/attachments/25330226/scratch.log?version=1&modificationDate=1223629296000&api=v2
mailto:datamonlist@glast2.Stanford.EDU
mailto:datamonlist@glast2.Stanford.EDU
https://confluence.slac.stanford.edu/download/attachments/25330226/l1proc_closeDeliveries.png?version=1&modificationDate=1238693004000&api=v2
http://glast2.stanford.edu
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=12976193
https://confluence.slac.stanford.edu/download/attachments/25330226/FailedFT2_logFile.txt?version=1&modificationDate=1236050807000&api=v2
https://www-glast.stanford.edu/protected/mail/opsprob/11103.html
https://confluence.slac.stanford.edu/download/attachments/25330226/RollbackHalfpipe.png?version=1&modificationDate=1235590292000&api=v2

But if multiple processes have failed (common), it's usually better to use the command line.

/afs/ -m PROD rollbackStream --minimum 'L1Proc[80819007]'slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline

This will roll back all of the failed, terminated, or cancelled processes in delivery 80819007. If you don't say --minimum, it will roll back the whole delivery.
That's usually not what you want. Also note that it will not rollback processes that have succeeded, but with incomplete information (ie - problems arising
from afs/nfs hiccups). Such processes may need to be rolled back via the front end. (for a list of pipeline commands, `/afs/slac.stanford.edu/u/gl/glast

` shows what is available)/pipeline-II/prod/pipeline --help

After a rollback, the red x on the data processing page will be gone, but the L1 status will still say Failed. This tends to confuse the duty scientists. You
might want to use the setL1Status task (see bellow) to make it say Running. This is really optional, it won't affect the processing in any way. But there will
be fewer pagers beeping.

Removing "dontCleanUp" is not necessary to process the data. The file just stops temporary files from getting deleted when we're done with them.

Some notes about how to roll back the half pipe can be found at Instructions for rolling back a halfPipe stream and susbsequent L1 stream

Rolling back substreams

From the , find the "Substreams" area and click the pink boxes for substreams that you want to roll back. Then click "Rollback Selected front end
SubStreams".

From the command line it's a bit more tricky:
/afs/ -m PROD rollbackStream --minimum 'L1Proc[90117001]/doRun[253889937]'slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline

Remember to escape the square brackets if you are in tcsh.

As of 2011/04/19, the prod command-line client fails if you try to roll back substreams. But the dev client running in prod mode can.
/afs/ -m PROD ... ()slac.stanford.edu/u/gl/glast/pipeline-II/dev/pipeline was this ever fixed? why or why not?

When to rollback

Wait for the "setStatus" stream to have run.

Rollback won't work unless everything downstream of the failed process is in a final state. It's generally not harmful to try too soon, you just get an
unhelpful error message. Most things at run level can be rolled back right away. If a recon job fails, you'll have to wait at least an hour. Maybe half a
day. Basically wait until all downstream processes have finished. If you try to roll back too soon, the attempt will fail harmlessly. So don't be afraid to try.

Notice that the GRB search is executed per delivery and depends on all the FT1 and FT2 files in each run to be registered (therefore, it depends on almost
"everything" that belongs to that delivery). For this reason, you might need to wait for the entire delivery to be completed before being able to roll back any
failed recon jobs. And because of the run lock (see below), some of the (parts of) runs in the delivery might have to wait for other deliveries to finish, which
might have their own failures... It's possible, but rare, to get deadlocks, where nothing can proceed until a lock is removed by hand. Best to ask for help
then ().who do we ask? and if us, what do we do to fix it?

In general, experience will tell you when you can roll back what. So, in doubt, you can try anyways (if it's too soon, nothing will happen and you will get an
error)!

Often you can roll things back sooner if you cancel some processes. If there is a delivery with some runs that are ready to roll back and others that aren't,
you can do the rollback if you cancel kludgeAsp. " " The /afs/slac.stanford.edu/u/gl/glast/pipeline-II/dev/pipeline -m PROD cancelProcessInstance 13388768
number (or numbers, you can use a space-separated list to do more than one at a time) is the oracle PK for the process instance, it's in the URL for the
process instance page in the frontend. This takes a long time, 10-30 minutes. Check to make sure the cancel actually happened. This often takes so long
that it times out and the cancel fails.

The dontCleanUp file

Any time one of the merges processes can't find all of its input files, a message is generated in the (and there will be errors in the log of the Log Watcher
failed processes complaining about "Different number of events ...") and cleanup for the run is disabled by a file called dontCleanUp in the run directory on
u41/L1. All cleanup jobs will fail if the dontCleanUp file is present. If everything is OK (see instructions below), that file can be removed and the jobs rolled
back.

To check that everything is OK, follow these steps:

The new way:

Look at the dontCleanUp file. It should contain a list of all merge processes that missed files, and what files were missing. It's possible that it will
get garbled by multiple jobs writing to it at once, so if it doesn't seem to make sense, you can still get the information by following the steps below.

The old way:

From the , click "Logging" (about 1/3 of the way down left side)glast-ground page
Click "Selection" (upper right) - page should look like this
Click "More Selections" (lower right) - page should look like this
In the "Select Program" field, enter "mergeStuff.py"
In the "Select Target" field, enter the run number.
Click "Submit Selection" - page should look like after filling Program and Target fields and submittingthis
Click "Table" (upper right, next to "Selection") - page should look like this

http://slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline
https://confluence.slac.stanford.edu/display/ds/Instructions+for+rolling+back+a+halfPipe+stream+and+susbsequent+L1+stream
https://confluence.slac.stanford.edu/download/attachments/25330226/RollbackSubstream.png?version=1&modificationDate=1235590761000&api=v2
http://slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline
http://slac.stanford.edu/u/gl/glast/pipeline-II/dev/pipeline
http://glast-ground.slac.stanford.edu/ISOCLogging
http://glast-ground.slac.stanford.edu
https://confluence.slac.stanford.edu/download/attachments/25330226/LogWatcherSelection.png?version=1&modificationDate=1235666773000&api=v2
https://confluence.slac.stanford.edu/download/attachments/25330226/LogWatcherEmptySelections.png?version=1&modificationDate=1235667094000&api=v2
https://confluence.slac.stanford.edu/download/attachments/25330226/LogWatcherMoreSelections.png?version=1&modificationDate=1235666773000&api=v2
https://confluence.slac.stanford.edu/download/attachments/25330226/LogWatcherTable.png?version=1&modificationDate=1235666773000&api=v2

Now you should have a list of () complaining about not being able to find input files. If any of the complaining merges are downstream of a failed what??
process, you can ignore them. This is usually the case. But if they are not downstream from a failure, it means there was a disk read error while setting up
the merge. Look at the logfile for that merge, it will say what files are missing. If they are really there, the merge can be rolled back and will probably work
the second time. If they are not there, there's a bigger problem, and this should be considered a "permanent failure".

Any time one of these messages is generated, cleanup for the run is disabled by a file called dontCleanUp in the run directory on u41/L1. All cleanup jobs,
and checkRun, will fail if that file is present. If everything is OK, that file can be removed and the jobs rolled back. The cleanupCrumbs jobs shouldn't fail if
they're rolled back after cleanupChunks has run (they used to, but don't anymore).

The run lock

Only one delivery can process a run at a time. This is enforced by a lock file in the run directory on u41/L1. If findChunks fails or there are permanent
failures in the run and another part of the run is waiting, it has to be removed by hand. It should never be removed unless the only failures in the run are
findChunks or permanent ones, or there's a deadlock. Even then you have to wear a helmet and sign a waiver.

HalfPipe locks

The halfpipe uses several locks that can get left behind when jobs die and then cause trouble with retries and rollbacks and other delivereies.

Halfpipe.mergEvt has a run lock. The names are like /nfs/farm/g/glast/u42/ISOC-flight/Downlinks/lock/135d293d where the last bit is the run number in
hex. If one of these jobs fails, it may leave this behind, then the retry or rollback will wait until it is removed by hand. But make sure that there actually isn't
another instance running.

If cleanup dies, it leaves behind
/nfs/farm/g/glast/u42/ISOC-flight/Downlinks/lock/cleanup
and then all cleanup jobs just pend.

Similarly for launchOnline and
/nfs/farm/g/glast/u42/ISOC-flight/Downlinks/lock/launchOnline
and if
/nfs/farm/g/glast/u42/ISOC-flight/Downlinks/stage/.decode
is there, launchOnline will fail.

findChunks

This process is now automatically retried like most of the others. When it fails, it attempts to remove the run lock (see above) and the throttle lock (next
section) by hand (and usually succeeds). But if it fails harder than usual, you might still have to do that by hand. Also, you'll probably have to:
mv /nfs/farm/g/glast/u41/L1/${runId}/${runId} ${deliveryid}_chunkList.txt.tmp${deliveryid}_chunkList.txt /nfs/farm/g/glast/u41/L1/${runId}/${runId}

#WBF I think we should have a section on chunkLists. If anyone beats me to writing it, go ahead!

In addition, findChunks checks the chunks to make sure they don't overlap, go backward, or otherwise act crazy. That doesn't happen much anymore.
Except when RePiping. See the section on that.

The throttle lock

There's a throttle that limits the number of RDLs that can be in process (or in the hard part, at least) at once. It works by making files with names like /nfs
/farm/g/glast/u41/L1/throttle/1.lock at the same time as it makes the run lock. config.throttleLimit is normally set at 2, 3 is usually safe but not always. Leave
it at 2 unless we're way behind and you're up for watching it closely.

You can tell from the contents of the file what the run & delivery were.

Suspending jobs

If the first part of a run is processing and you want to stop the second part from starting at a bad time, use the pipeline front end to get the LSF job ID of
the findChunks process for the second part (which will be pending due to the run lock placed by the first part), log into a noric as glastraw and use bstop to
suspend it. bresume it when you're ready to let it run.

If both parts of a run arrive while it's locked out, you can reduce the total amount of I/O that it does by letting the smaller part go first, since all of the data in
the part that goes first has to be merged twice. Suspend findChunks for both parts, remove the run lock, then resume findChunks for the part with less
data. "Less data" == "fewer chunks" unless it's highly fragmented, in that case du on the evt chunk directory (like /afs/slac.stanford.edu/g/glast/ground

) may give a better idea./PipelineStaging6/halfPipe/090512001/r0263753970

Skipping events

Sometimes we get an event that crashes digi. Usually with an error message like

Setting Missing Cal Readout Flag, 2 CalDigis are missing readouts for Event: 10641536 Apid: 956 Event Index: 20074
/afs/ : line 19: 10505 slac.stanford.edu/g/glast/ground/releases/volume14/GlastRelease-17-35-24-lp29/bin/redhat4-i686-32bit-gcc34-Optimized/Gleam
Segmentation fault (core dumped) $INST_DIR/exe/redhat4-i686-32bit-gcc34-Optimized/Gleam "$@"

Then we have to skip the event. To do this roll back the whole doChunk stream and set a variable EVENTSTOSKIP to a space-separated list of event
indices. That's the offset into the chunk, NOT the GEMID. 20074 in the example above.

Skipping events when Gleam segfaults

http://slac.stanford.edu/g/glast/ground/PipelineStaging6/halfPipe/090512001/r0263753970
http://slac.stanford.edu/g/glast/ground/PipelineStaging6/halfPipe/090512001/r0263753970
http://slac.stanford.edu/g/glast/ground/releases/volume14/GlastRelease-17-35-24-lp29/bin/redhat4-i686-32bit-gcc34-Optimized/Gleam

Sometimes we get an event that crashes Gleam in recon.

It will leave a core dump, which is preserved. Instruction for skipping the event are:

- Fire up gdb on the core file (using Gleam as the executable)
- go up the stack 26 levels to RootIoSvc::run ("up 26")
- print eventNumber
- add 1 to the number it gives you, and add that to the starting index of the crumb (which is the doCrumb stream number)
- roll back the doChunk stream, defining EVENTSTOSKIP=the number you just calculated

Re-trying FASTCopy ingestion or ProcessSCI

The instructions on how to retry FASTCopy ingestion or ProcessSCI can be found here

Useful resources

You should definitely join the following mailing lists:

Data Handling (datalist)
Level 1 processing (l1proclist)
Data processing pipeline (pipelinelist)

And probably these:

LAT Instrument Data Monitoring (datamonlist)
Questions and problems concerning GLAST software (helpsoftlist)
LAT operations team (latopslist)
Nagios alert messages (nagios)
People who will work ISOC shifts (shiftslist)
ISOC Science Operations (solist)

Other things you may want to know

setL1Status task

Tired of being paged because L1Proc status still says Failed after a rollback?

/afs/slac/g/glast/ground/bin/pipeline --mode PROD createStream --define "runNumber=240831665,l1RunStatus=Running" setL1Status
OR:
/afs/slac/g/glast/ground/bin/pipeline --mode PROD createStream --define "runNumber=240837713" setL1Status

l1RunStatus defaults to Running, but you can set it to any of the allowed values (Complete, InProgress, Incomplete, Running, Failed).

Advanced: in case a run needs to be set as Complete/Incomplete in the ACQSUMMARY table, see here: .HTF Run completion status

setL1Quality task

This can be used when you need to preset a run to Bad (upcoming tests, etc.).

/afs/slac/g/glast/ground/bin/pipeline --mode PROD createStream --stream 240831665 --define "runNumber=240831665,newQuality=Bad" setL1Quality

How to contact SCCS

Send an email to unix-admin (this usually works, even in the night and in the weekend).
If you don't get an answer and the issue is urgent, call xHELP (650-926-4357). Choose 3 to page the on-call person.
If your call/email isn't answered and the issue is REALLY urgent, page again the on-call person at 650-926-2230.

Log Watcher Messages

Message text: Can't open lockfile /nfs/farm/g/glast/u41/L1/r0248039911/r0248039911.lock.

* The monitoring shifter doesn't need to do anything about it. The L1 shifter should figure out why it happened. In this case, it was because I rolled back a
merge job in a run that was already done. (Warren)

cancelProcessInstance

Here's the syntax to cancel a process that is not in final state, and all its dependencies (might be useful when you don't want to wait for it to finish before
rolling something back. However, it's usually faster to wait as the cancel can take a long time):
/afs/ --mode PROD cancelProcessInstance 8073657slac.stanford.edu/u/gl/glast/pipeline-II/dev/pipeline

https://confluence.slac.stanford.edu/display/SASHOW2FIX/HTF+FC+Incoming
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=243102956
http://slac.stanford.edu/u/gl/glast/pipeline-II/dev/pipeline

The Process Instance Primary Key (ie - 8073657 in the example) can be determined in the the URL for the process instance page (eg: the PIPK for http://gl
 is 20253756).ast-ground.slac.stanford.edu/Pipeline-II/pi.jsp?pi=20253756

NOTE: Please don't use this unless you really (REALLY!!!) know what you are doing.

Host or host group is not used by the queue.

This shouldn't happen anymore, we got rid of the host lists.

If you see jobs being terminated with exceptions in the message viewer saying things like "yili0148+5: Host or host group is not used by the queue. Job not
submitted.", it means the hosts available to glastdataq have changed. The solution is to roll back the affected chunks (the doChunk streams) with a new
value for HOSTLIST. When you roll back the streams from the frontend, on the confirmation page you are presented an opportunity to set or redefine
variables. To figure out what the new value needs to be, do a "bqueues -l glastdataq". The output will include a line like "HOSTS: bbfarm/". In this case
you'd enter HOSTLIST=bbfarm in the box on the confirmation page. bbfarm is actually a temporary thing for the cooling outage, when things get switched
back to normal, the relevant line from bqueues will probably look more like "HOSTS: glastyilis+3 glastcobs+2 preemptfarm+1". Then the thing to enter in
the box would be HOSTLIST="glastyilis glastcobs genfarm".

Red question marks in display

Red question marks show up in the display for HalfPipe. Click on the FASTCopy "Logs" number. First check to see if the "ProcessSCI.end" event has
occurred. If not, then wait until it occurs and see if the red question mark persists. If it persists and the log shows messages saying "pipeline
nonEventReporting submission succeeded" or "no reassembled datagrams found", it just means that it contained data that had already been received.
Meaningful deliveries will say "found XXX LSEP datagrams in". If it is a meaningful delivery, then further intervention is required.

Multiple lines for run in a given delivery

Occasionally, if deliveries arrive too close together, there may be a problem with the assignment of IDs. In this case, there may be several lines that
appear for each run in a particular delivery, as shown . It is a display issue and not a problem with the processing itself, and Jim Panetta (panetta{at}here
slac) or Steve Tether (tether{at}slac) should be able to resolve the problem with the display (Who should be doing this going forward? Also, documentation

). Also email OPSPROB (opsproblist{at}glast2{dot}stanford{dot}edu)needed on how this is accomplished

Stuck processes

If you suspect a process is stuck, visit the process page from the run page (ie - click on the green task bar in the Data Processing Page, then click on the
particular job that is running in the list at the bottom of the page). Each entry in the table on the page will contain a link to "Messages", "Log", and "Files". If
you click on "Log", it should show you the log, but more importantly, it'll show the location of the log file right above the box containing the log information
(note: if the file is too big, it will not open, but the link to "Files" will show where the log is located, so you can get the information that way as well). If you
visit the location of the file on the public machines, you can determine when the last time the file was updated (ls -l, or tail -f to see if it's still streaming). If it
is not updating, find out the batch job number (JobId from the stream table), log into noric as glastraw, and issue a bkill <JobId> (bkill -r might be
necessary if they're not going away after doing the bkill). The process should automatically be restarted after this command is issued.

I like to sometime do a sanity check by (on a noric)
date ; ls -lt /nfs/farm/g/glast/u41/L1/throttle/ ; bjobs -wu glastraw | head ; busers -w glast glastmc glastraw ; bqueues -w glastdataq

The throttle locks should be ~an hour or less old. If much older, maybe a stuck job or findChunks wasn't rolled back right.

So should the oldest batch jobs except: mergeReconChunks, usually 3-4 hours could be up to a day; mergeCalChunks, mergeSvacChunks,
fastMonHist, could be ~2 hours. If much older, they might be stuck.

If you suspect a machine to be hung (several processes stuck on the same machine), then also email unix-admin{at}slac about the machine, along with
bkill-ing the processes. You can also remove it from LSF (see below).

Repiping

When weird things are happening with the delivery that you can't figure out or it has too many chunks to process, it may be necessary to repipe the stream
(probably a good idea to check with someone first -). Log in as glastraw and issue the following command:Who?

/afs/ -m PROD createStream --stream ${ID} --define downlinkID=${ID},runID=${ID} RePipeslac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline

where ${ID} is the Run ID (just numbers, no leading r0). Set a shell or environment variable, it will be easier to type and you'll use it again in the next step.
Why are you setting the stream, downlink, and run all to the same thing? You don't have to. The run has to be right, the stream and downlink could be
anything. But it will be easier to check progress of RePipe and L1 in the frontend if they're all the same.

If you're RePiping an LCI run, you'll have to set the chunkApids variable when creating the stream. For run 270108008 it was 965, I'm not sure if there are
others.

/afs/ -m PROD createStream --stream ${ID} --define downlinkID=${ID},runID=${ID},chunkApids=965 slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline
RePipe

This will create a directory in /nfs/farm/g/glast/u28/RePipe ... which should look like a normal delivery, plus some harmless junk. It will contain the entire
run, you only have to do this once no matter how many deliveries the run was split between.

Wait for RePipe to finish. You can get to the current version here:http://glast-ground.slac.stanford.edu/Pipeline-II/?
taskFilter=RePipe®Exp=on&include=all&versionGroup=latestVersions&submit=Filter

http://glast-ground.slac.stanford.edu/Pipeline-II/pi.jsp?pi=20253756
http://glast-ground.slac.stanford.edu/Pipeline-II/pi.jsp?pi=20253756
https://confluence.slac.stanford.edu/download/attachments/25330226/l1proc_question.png?version=1&modificationDate=1238706143000&api=v2
https://confluence.slac.stanford.edu/download/attachments/25330226/deliveries_too_close.png?version=1&modificationDate=1277839436000&api=v2
http://slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline
http://slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline
http://glast-ground.slac.stanford.edu/Pipeline-II/?taskFilter=RePipe®Exp=on&include=all&versionGroup=latestVersions&submit=Filter
http://glast-ground.slac.stanford.edu/Pipeline-II/?taskFilter=RePipe®Exp=on&include=all&versionGroup=latestVersions&submit=Filter

You will need to then manually re-enter the run into L1Proc. To do this, bkill any findChunk processes that are associated with the RunID, remove the run
lock from /nfs/farm/g/glast/u41/rXXX (where XXX is the run number), also move all *chunkList*.txt (leave the .txt.tmp ones alone) files to something else
(just suffixing them with ".ignore" should work)

#WBF I think we should have a section on chunkLists. If anyone beats me to writing it, go ahead!

and issue the following command:

/afs/ -m PROD createStream --stream ${ID} --define DOWNLINK_ID=${ID},DOWNLINK_RAWDIR=/nfsslac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline
/farm/g/glast/u28/RePipe/${ID} L1Proc

The repiped run(s) will create run and throttle locks just like any other, so you don't need to worry about what else is going on in L1 when you inject them.
Except there shouldn't be anything else for this run running or waiting, or you'll have trouble renaming the chunklists as described above. But they won't
show up on the data processing page, and the regular runs that do show up there will appear to be slow starting for no obvious reason, so you might want
to put a note in opslog () to avoid confusing the monitoring shifter.is the opslog still being used? where is it?

You should be able to see if the process restarted correctly by visiting , (Updated to point to L1 v5.7). Click on "Last" to get to the end of the list.here

NOTE: If repiping a process that has completed, then it may be necessary to rename the chunkList files for that run before issuing L1Proc command (in /nfs
/farm/g/glast/u41/L1/runs/YYY/r0XXX ... where YYY are the first three numbers to XXX).

How To Fix common FASTCopy problems

From Steve Tether: I have a prototype script that corrects a test problem I created in the NIGHTLY database. If you see an ingestion failure for one or
more Level zero files of a delivery first take a look at the FASTCopy logs available through the Data Processing web app. (Click on the progress bar for
FASTCopy then on the links for those files under Input Products that show a status of INGESTFAIL). If it looks like an NFS glitch, i.e., a message says
such-and-such a directory or file does not exist, run the following command in a terminal window that is logged into the SLAC AFS cell and has the ISOC
PROD environment set up (:where are the instructions for setting up that environment?

python ~tether/retryIngestion.py delivery-id-number

For example

python ~tether/retryIngestion.py 100308011

The script will check whether the files for that delivery are still on disk. If any are not or if the script reports a failure then you'll have to refer the problem to
me (). Normally the files received for a given day (UTC) are archived and removed from disk at about noon will be Don? Need procedures for that person
(Pacific time) the next day. If all goes well then the last output from the script will be a listing of the L0 files whose statuses were reset to NEW. After that
the L0 file states should go through SUBMITTED and stop at INGESTDONE. If ingestion fails again then Jim or I will have to handle it.

Batch commands

bjobs -wu glastraw - running this from noric will list all the jobs in the LSF batch queue owned by glastraw (which is the user submitting pipeline streams).

To close a specific machine from LSF: sudo badmin hclose -C "test" dole0022 (from a machine where you have sudo privileges, i.e. not a noric).

To reopen a specific machine to LSF: sudo badmin hopen -C "test" dole0022

Here's a little script that is useful for monitoring:

#!/bin/bash

lines=$1

export LSB_BJOBS_FORMAT="id name:15 user submit_time stat:5 exec_host:10 start_time mem cpu_used"

date

ls -lt /nfs/farm/g/glast/u41/L1/throttle

bjobs -u all -q glastdataq | egrep -v '(sleep|fitEnergyBand|sourceAnalysis)' | head $lines

bjobs -p -u all -q glastdataq | head

busers -w glast glastmc glastraw

bqueues -w glastdataq

Shift sign up

Sign up for shifts . View shift calendar here here

http://slac.stanford.edu/u/gl/glast/pipeline-II/prod/pipeline
http://glast-ground.slac.stanford.edu/Pipeline-II/streams.jsp?status=0&d-16544-p=5&task=262324831
http://glast-ground.slac.stanford.edu/ShiftSchedule/weeklyShiftSchedule.jsp
https://confluence.slac.stanford.edu/display/Glast/Shift+Calendar

Useful L1Proc links (these are designed to keep you from waiting for the entire L1Proc history to be retrieved ... which
could be 10 min and up).

All L1Proc Deliveries that have not completed
All L1Proc Runs that have not completed
All L1Proc Runs that have failed with a timestamp (it is a good idea to update your timestamp to shorten the search).

http://glast-ground.slac.stanford.edu/Pipeline-II/streams.jsp?min=&max=&status=NOTSUCCESS&minDateDate=None&minDate=-1&maxDateDate=None&maxDate=-1&submit=Filter&task=262324831
http://glast-ground.slac.stanford.edu/Pipeline-II/streams.jsp?min=&max=&status=NOTSUCCESS&minDateDate=None&minDate=-1&maxDateDate=None&maxDate=-1&submit=Filter&task=262324836
http://glast-ground.slac.stanford.edu/Pipeline-II/process.jsp?min=&max=&status=FAILED&streamIdFilter=&dateCategory=enddate&minDateDate=26%2FFeb%2F2009+14%3A00%3A00&minDate=1235685600000&maxDateDate=None&maxDate=-1&submit=Filter&task=262324831&pstream=&process=

	Things to know while on-call for Data Processing

