
Creating a Project that Depends on org.lcsim

Creating a Maven Project that Depends on org.lcsim

Overview

This tutorial shows how to create a Maven-based project that depends on org.lcsim, so that your code can seemlessly access this framework and all of its
dependencies.

The tool is used to build the software. It automates the low-level details involving dependencies and compiling. For instance, it can Maven org.lcsim
automatically download required jar files based on a repository URL. Additionally, it can build a complete project website including source code metrics,
cross-reference, and JavaDocs.

Directory Setup

Create a directory for your new project and go into it.

mkdir ExampleProject
cd ExampleProject

Now, create a directory for your source files, including directories for the org.lcsim base package.

mkdir -p src/org/lcsim

A directory for test cases should also be created.

mkdir -p test/org/lcsim

Build Files

The project's root directory should contain three Maven configuration files.

project.xml - main configuration file, listing the project's core information and its dependencies
maven.xml - Maven settings, such as the default build target
project.properties - project properties file, including source repository locations, e.g. freehep.org

These can be obtained from org.lcsim's root directory.

cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd co lcsim
cd lcsim
cp project.xml maven.xml project.properties ..
cd ..
rm -rf lcsim

Customize the following information in for your project.project.xml

THIS PAGE IS OUT OF DATE.

The information on this page is no longer accurate, as lcsim-based projects have switched to using maven 2.

While there are currently no equivalent instructions for maven 2, please refer to the projectlcsim-contrib
in the SLAC CVS for an example of an m2 project that depends on lcsim.

Source Control

It is always a good idea to store your projects in a source control system, such as . Contact your local system administrator for instructions CVS
on setting up a module for your project.

http://maven.apache.org
http://www.lcsim.org/software/lcsim
http://www.nongnu.org/cvs/

<artifactId>ExampleProject</artifactId>
<currentVersion>0.1</currentVersion>
<organization>
 <name>Example Organization</name>
 <url>http://www.example.org</url>
</organization>
<description>This is an example Maven project.</description>
<shortDescription>Example Maven project</shortDescription>
<url>http://www.example.org/ExampleProject</url>
<issueTrackingUrl>http://www.example.org/ExampleProject/bugs</issueTrackingUrl>
<repository>
 <connection>scm:cvs:pserver:anonymous@cvs.example.org:/cvs/example:ExampleProject</connection>
</repository>
<name>ExampleProject</name>
<inceptionYear>2005</inceptionYear>

After the project information, the following lines should be inserted into to make it depend on org.lcsim, itself.project.xml

<dependency>
 <groupId>lcsim</groupId>
 <artifactId>lcsim</artifactId>
 <version>0.9</version>
 <url>http://www.lcsim.org</url>
</dependency>

The org.lcsim JAR is currently maintained as a downloadable dependency. Each project user needs to compile and build this program themselves in not
order to install it to the local repository.

Basic Build Command

The project can be built from the command line with this simple command.

maven

This creates the default JAR file and installs it into the directory under .~/.maven/repository lcsim

Alternately, you can use the to build your Maven-based projects.Netbeans IDE

Run Plugin

The can generate a run script for your project.FreeHep Run Plugin

To enable this functionality, insert the following into the file.project.xml

<dependency>
 <groupId>freehep</groupId>
 <artifactId>freehep-run-plugin</artifactId>
 <version>1.1.1</version>
 <url>http://java.freehep.org/maven/freehep/plugins</url>
 <type>plugin</type>
</dependency>

Maven needs to know which class the run script should execute. This goes into the file.project.properties

maven.jar.mainclass=org.lcsim.example.ExampleMain

To build the script, execute the following target.

org.lcsim version

Maven requires a specific version tag for dependencies. This means that the version string needs to updated when a new org.lcsim release is
made, or the older version will be used instead.

https://confluence.slac.stanford.edu/display/ilc/Installing+Netbeans+with+Maven+Support
http://java.freehep.org/freehep-run-plugin/index.html

maven -Drun.install=$(pwd) run:install

Two run scripts named after your project should now be found in the directory.bin

There is a Unix/Linux script

bin/ExampleProject

and also one for Windows.

bin/ExampleProject.bat

These scripts will setup the classpath and execute the main function of the specified class.

public static void main(String[] args)

On Linux, the script can be run from the current directory, as follows.

./bin/ExampleProject [args]

The command line syntax of the script is completely up to you.

JAS

JAS3 can be configured to automatically load your project's classes on startup.

This target will copy the project's JAR into JAS3's extensions directory, located at .~/.JAS3/extensions

maven jas:install

The class should now be available using the command within JAS3.File -> Load

Build Script

A full build command for your project, incorporating all of the above features, would look something like this.

maven -Dmaven.test.skip=true -Drun.install=$(pwd) clean jar:install jas:install run:install

This will do a clean build, skipping tests, and installing the run script to the current directory. It also copies the JAR files into the ~/maven/repository/lcsim
and directories.~/.JAS3/extensions

The version number will be stripped out of the JAR name, and any existing JAR by the same name will be overwritten.

http://jas.freehep.org/jas3

	Creating a Project that Depends on org.lcsim

