
T3P Sample Inputs

Table of Contents

1 newline newline newline newline ModelInfo 2 MeshPartitioning 3 Normal finite element parameters 4 P-window for short-range wakefield 5 Moving-window
newline newline newline with mesh refinement for short-range wakefield 6 Gaussian beam going through a cavity 7 Time Integration Parameters 8 Wakefiel

newline newline newline newline newline newline d Monitor 9 Point Monitor 10 Power Monitor 11 Volume Monitor 12 CheckPoint 13 LinearSolver 14 Load a
TEM waveguide mode on a coax port

ModelInfo

Tell T3P which mesh file to load and what boundary conditions are used for the different side sets in the mesh file (default: Electric)

 ModelInfo: {
 File: coarse.ncdf
 BoundaryCondition: {
 Electric: 2
 Magnetic: 3 4
 Absorbing: 5 6
 }
 }

MeshPartitioning

To specify the method to partition the mesh

 MeshPartitioning: {
 Method: PARMETIS //the other option is ZOLTAN
 Zoltan: { //if the main method is ZOLTAN, this container will provide further zoltan specific
options
 Method: RCB
 Dimension: 1
 Partition Direction: Z
 }
 }

Normal finite element parameters

 FiniteElement: {
 Order: 2 // global order of basis functions (can be 1...6, 2 is recommended)
 CurvedSurfaces: on
 }

P-window for short-range wakefield

set the basis order to be 0 (p=0).

 FiniteElement: {
 Order: 0 //p=0 outside of the window
 CurvedSurfaces: on
 }

set an automatic moving window that following with the beam

 PRegion: {
 Type: AutomaticMovingWindow
 Order: 2 //inside the window, p=2 (basis function order)
 Back: 0.01 //back pudding is 0.01m
 Front: 0.1 //front pudding is 0.1m
 StructureEnd: 1.0 //the maximal z.
 }

Moving-window with mesh refinement for short-range wakefield

set the basis order to be 0 (p=0).

 FiniteElement: {
 Order: 0 //p=0 outside of the window
 CurvedSurfaces: on
 }

set an automatic moving window that following with the beam

 MeshRefinement: {
 Order: 2 //inside the window, p=2 (basis function order)
 Back: 0.01 //back pudding is 0.01m
 Front: 0.1 //front pudding is 0.1m
 Subdivision: 1 //subdivide each element inside window once
 StructureEnd: 1.0 //the maximal z.
 }

Gaussian beam going through a cavity

The first step is to provide beam information:

 LoadingInfo: {
 Bunch: {
 Type: Gaussian
 Sigma: 2e-3 //Sigma (RMS) size of the bunch
 Nsigmas: 5 //beam occupies the location from -5 sigma to +5 sigma, total of 10 sigmas
 Charge: 1. //charge
 }
 SymmetryFactor: 4 //factor by which to reduce the charge to account for symmetry conditions
(monopole on axis: use 4, dipole at X (or Y) offset: use 2 in connection with proper electric boundary
conditions in one plane)
 StartPoint: 0. 0. 0. //StartPoint is the position where the beam enters the structure (typically
at low Z values)
 Direction: 0. 0. 1. //Direction along which the bunch will move, at the speed of light (should
be the direction of the normal of the face with BoundaryID)
 BoundaryID: 5 //The boundary ID (sidelist number from Cubit), specifies the boundary
through which the bunch enters the structure (should be a flat surface, containing StartPoint)
 }

Optional: Force analytical BeamBoundaryLoading (can be used if the beampipe is cylindrical). Not required. Default is OFF.

 Loading: {
 Type: BeamBoundaryLoading
 Analytical: on
 // Specify the right-handed coordinate system with its Z-axis along the beamline (CrossProduct(X, Y) = Z =
Direction specified above)
 Origin: 0.0 0.0 0.0
 XDirection: 1.0 0.0 0.0 //this is the direction of the beam offset, if any
 YDirection: 0.0 1.0 0.0
 Beampipe radius: 0.04
 Beam offset: 0 //offset in x-direction of the local 2D coordinate system (value needs to be
consistent with StartPoint specified above)
 }

Time Integration Parameters

 TimeStepping: {
 MaximumTime: 10.e-10 //the maximal time to step
 DT: 2e-12 //delta T
 }

Wakefield Monitor

 Monitor: {
 Type: WakeField // Weiland method (not for protruding structures, beam pipe radius must be the same on
left and right side)
 Name: wake
 Start contour: 0.05 // z-position at which the beampipe-cavity transition starts
 End contour: 0.10 // z-position at which the beampipe-cavity transition ends
 Smax: 0.3 // the longitudinal wake potential will be recorded from s=0 to s=Smax
 }

Point Monitor

To record the field values at specified location

 Monitor: {
 Type: Point //point monitor
 Name: monA //an output file called monA.out will be generated
 //it contains: t Hx Hy Hz Ex Ey Ez
 Coordinate: 0.00002, 0.02, 0.1495 //the location
 }

Power Monitor

 Monitor: {
 Type: Power
 ReferenceNumber: 4 //which reference surface to monitor
 Name: mymon2
 TimeStart: 0 //when power monitor starts
 TimeEnd: 30.0e-9 //when it ends
 TimeStep: 0.125e-11 //how often it records power density
 }

Volume Monitor

 Monitor: {
 Type: Volume
 Name: vol
 TimeStart: 10.e-9 //when volume monitor starts
 TimeEnd: 500.e-9 //when it ends
 TimeStep: 50.e-9 //how often it records volume fields
 }

After T3P finished runs, users should run acdtool to generate mode files for each records of the volume fields using the following command:
acdtool postprocess volmontomode t3pinput <jobname>

The mode files generated can be viewed using paraview.

CheckPoint

request T3P code to checkpointing itself every certain timesteps so that one can restart T3P.

 CheckPoint: {
 Action: restart //default should be restart. If there is no data available, it will have fresh
start.
 Ntimesteps: 100 //every 100 times steps, code will checkpoint itself
 Directory: CHECKPOINT //the default directory to store checkpointing data
 }

LinearSolver

The options for linear solvers in the implicit timestepping.

 LinearSolver: {
 Solver: CG //other options include MUMPS (direct solver, faster for less than 32
CPUs) if it is compiled in
 Preconditioner: CHOLESKY //other options include DIAGONAL
 PrintFrequency: 50 //if you want print solver convergence history
 QuietMode: 1 //Set it to 1 if you do not want to print anything
 Tolerance: 1e-10 //relative tolerance
 MaxIterations: 3000 //maxima number of iterations before CG quits
 }

Load a TEM waveguide mode on a coax port

 Loading: {
 Type: PortModeLoading //loading type
 Port: {
 ReferenceNumber: 3 //port is at reference surface 3
 Origin: 0.0 0.0 -0.011
 XDirection: 1.0 0.0 0.0
 YDirection: 0.0 1.0 0.0
 ESolver: {
 Type: Analytic
 Mode: {
 WaveguideType: Coax
 ModeType: TEM
 A: 0.0011
 B: 0.0033
 }
 }
 }
 Excitation: {
 Power: 1.
 Pulse: {
 Type: Monochromatic
 Frequency: 10.5e9
 Rise periods: 150
 Fall periods: 150
 T0: 0.
 TMax: 100.e-9
 }
 }
 }

	T3P Sample Inputs

