
Advanced AIDA Tutorial
 THIS PAGE IS UNDER CONSTRUCTION

AIDA for Power Users
#Introduction
#Secondary Y Axis
#Fitting

Introduction

This Document covers advanced topics in JAS3 and AIDA. It assumes that you are familiar with AIDA and that you have completed the Getting Started
Tutorial
The examples in this section are mostly written in the Python language. It's syntax is simpler and less strict than Java, yet very clear. If you do not feel
comfortable learning yet another language, please visit the exellent, if slightly dated . However, please feel encouraged to take a look AIDA documentation
at the examples. They should all run out of the box (if not, please don't feel discouraged – file a bug report), so that you should still be able to get
something out of them.

Secondary Y Axis

Comparing two datasets in the same plot is a very convenient feature in AIDA. However, those two datasets may not always have the same scale, or even
the same units. JAS3 lets you add a secondary Y Axis, which can be scaled independently of the primary one. Just select the tab in the Data Plot

 dialog. For each data set listed on the left-hand side, you can select which axis to associate it with by selecting either for the primary Y Properties Y0
Axis on the left-hand side of the plot, or for the secondary Y Axis on the right-hand side of the plot. The properties of each axis, like range and label can Y1
be changed in the tab.Y Axis
You can also do it in a program:

https://confluence.slac.stanford.edu/display/ilc/Basic+Plotting+with+JAS3+and+AIDA
https://confluence.slac.stanford.edu/display/ilc/Basic+Plotting+with+JAS3+and+AIDA
http://aida.freehep.org/doc/v3.2.1/UsersGuide

import hep.aida.*;
import java.util.Random;

public class SecondAxis {
 public static void main(String[] argv) {

 IAnalysisFactory af = IAnalysisFactory.create();
 ITree tree = af.createTreeFactory().create();
 IHistogramFactory hf = af.createHistogramFactory(tree);

 IHistogram1D h1 = hf.createHistogram1D("h1",100,-6,4);
 IHistogram1D h2 = hf.createHistogram1D("h2",100,-4,6);

 Random r = new Random();

 for (int i = 0; i<1000; i++) {
 h1.fill(r.nextGaussian()-1.);
 h2.fill(r.nextGaussian()+1.);
 h2.fill(r.nextGaussian()+1.);
 }

 IPlotterFactory plotterFactory = af.createPlotterFactory();
 IPlotter plotter = plotterFactory.create("Styles.java plot");

 // Change the default styles for the region to hide
 // legend and statistics
 IPlotterStyle regionStyle = plotter.region(0).style();
 regionStyle.legendBoxStyle().setVisible(false);
 regionStyle.statisticsBoxStyle().setVisible(false);

 // >>>>> This style overwrites default "Y0" position of y axis
 //
 IPlotterStyle style = plotterFactory.createPlotterStyle();
 style.yAxisStyle().setParameter("yAxis", "Y1");
 //
 // >>>>>

 plotter.region(0).plot(h1);
 plotter.region(0).plot(h2, style);

 plotter.show();
 }
}

Changing Layout/Style/Properties with a Script

While it is convenient to be able to manipulate your data with the mouse, in many cases you will want to apply the same modifications to a set of similar
data, or perform more complicated modifications that are quite possible to do with AIDA, but not (yet) implemented in JAS3. This is where a script comes
in handy

Advanced Manipulations of Histograms

Adding and subtracting histograms

Fitting

Using predefined functions

Writing your own function

Oftentimes you will have to perform more complicated computations than can be put in a string. Use this template to

from hep.aida import IFunction
from org.lcsim.util.aida import AIDA
import math

class MyFunc(IFunction):
 def __init__(self, track):
 self.title = "My Own Function"
 return

 def providesGradient(self):
 return false

This Function returns the value f(x)
x can be multi-dimensional
 def value(self, x):
 y = x[0] + math.exp(x[1]) + x[0]*x[1]
 externalValue = someExternalFunction(y, x)
 return externalValue-y

This tells AIDA the dimension of the function
 def dimension(self):
 return 2

 def annotation(self):
 ann = IAnnotation()
 ann.addItem('Title', self.title)
 return ann

def someExternalFunction(y, x):
 return 2*y+3*x[0]

def main():
 tree = aidaMasterTree
 aida = AIDA.defaultInstance()
 funcFac = aida.analysisFactory().createFunctionFactory(tree)

Tuples

Flat Tuples

Nested Tuples

	Advanced AIDA Tutorial

