Lucretia Conventions for Quad Magnet Strength

A quadrupole magnet employs a field gradient \mathbf{g} measured in T / m or (G $/ \mathrm{cm}$ in CGS units). The field focuses the beam with strength $\mathbf{k}=\mathbf{g} /(\mathrm{B})$ where \mathbf{B} is the beam rigidity.

The EPICS control system displays the quadrupole magnet strength in kilogauss (kG). This is confusing. What it means that the field gradient \mathbf{g} gets multiplied by the magnet length \mathbf{L} so the EPICS B-field represents the integrated field strength $\mathbf{B}=\mathbf{g L}$.
blocked URL

Magnet Device Display OF10525 \qquad QUAD:IN10:525					
Status					
B-Field			Z	1011.7198 m	
BCON	4.0854942	kG		Current	
BDES	4.0854942	kG	IDES	2.450505	A
BACT	4.0854931	kG	IACT	2.450318	A

```
>> BEAMLINE {120}
ans =
    struct with fields:
        Name: 'QE10525'
            S: 11.4811
            P: 0.1251
        Class: 'QUAD'
            L: 0.0540
            B: 0.2042
            dB: 0
            Tilt: 0
            aper: 0.0160
            PS: 38
        Offset: [0 0 0 0 0 0]
        Girder: 0
    TrackFlag: [1\times1 struct]
            Type: '1.26q3.5'
            Coordi: [3.6120 0 1.0117e+03]
            Anglei: [-0.6109 0 0]
            Coordf: [3.5811 0 1.0117e+03]
            Anglef: [-0.6109 0 0]
```

```
>> PS(38)
ans =
    struct with fields:
```

 Ampl: 1
 SetPt: 1
 Step: 0
 Element: 120
 dAmpl: 0
 Focusing: $\quad M_{Q F}=\left(\begin{array}{cc}\cos \left(\sqrt{K_{n}} l\right) & \frac{1}{\sqrt{K_{n}}} \sin \left(\sqrt{K_{n}} l\right) \\ -\sqrt{K_{n}} \sin \left(\sqrt{K_{n}} l\right) & \cos \left(\sqrt{K_{n}} l\right)\end{array}\right)$

Defocusing: $\quad M_{\varrho D}=\left(\begin{array}{cc}\cosh \left(\sqrt{\mid K_{n}} \mid\right. & \frac{1}{\sqrt{\left|K_{n}\right|}} \sinh \left(\sqrt{\left|K_{n}\right|}\right) \\ \sqrt{\left|K_{n}\right|} \sinh \left(\sqrt{\left|K_{n}\right|} l\right) & \cosh \left(\sqrt{\left|K_{n}\right|} l\right)\end{array}\right)$

