
1.

2.

1.
2.

1.
2.

3.

1.
2.

a.
b.
c.

1.
2.

a.

Kubernetes cluster ad-build
Page about kubernetes clusters and ad-build ad-build-dev

Background information
How to access
Other Notes
Current status
Current Tasks

Background information

Runs on hardware in s3df

Allocatable:
 cpu: 64
 ephemeral-storage: 152933498761
 hugepages-1Gi: 0
 hugepages-2Mi: 2816Mi
 memory: 259679512Ki
 pods: 220
System Info:
 Machine ID: 92faa81e90af4e65ba73d3007e42519e
 System UUID: ce9ba000-5727-11ed-8000-3cecefd8e38e
 Boot ID: 96386228-b4ab-4836-b764-b22d4dfc0cda
 Kernel Version: 4.18.0-372.32.1.el8_6.x86_64
 OS Image: Red Hat Enterprise Linux 8.6 (Ootpa)
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: containerd://1.6.31
 Kubelet Version: v1.28.8
 Kube-Proxy Version: v1.28.8

ad-build-dev is used for build system development, while is the production build system for users.ad-build

How to access

ad-build-dev cluster: https://k8s.slac.stanford.edu/ad-build-dev

ad-build cluster: https://k8s.slac.stanford.edu/ad-build

After following the commands in those links, you will need to request access to the cluster from Claudio.
Recommended to install k9s tool https://k9scli.io/topics/install/

Other Notes

Kubernetes cluster is intended to be just for build system.
Can use local machine or nodes in the kubernetes cluster to create docker images (Don't need access to s3df/afs filesystem if all modules
/dependencies are uploaded to GitHub, as they should be)
Docker can be ran on local machine, but not on s3df, it is intended to use apptainer instead, if build enviornment wants to be passed around. So
when this build system is finished, developers/users won't use docker directly, instead will use apptainer and pull docker images from artifact
storage (if needed)

Current status

We have a self-hosted runner image built: (Temporary location)pnispero/gh-runner-image - Docker Image | Docker Hub
how to deploy cbs on ad-build-dev cluster

kubectl create configmap env-config-map --from-file=env-config-map.yaml
last step: kubectl apply -f deployment.yaml
Solution: a vault operator will be in place and we won't need these secrets

Current Tasks

work on cli - refer to CLI Tool
backend proposal?

https://k8s.slac.stanford.edu/ad-build-dev
https://k8s.slac.stanford.edu/ad-build
https://k9scli.io/topics/install/
https://hub.docker.com/r/pnispero/gh-runner-image
https://confluence.slac.stanford.edu/display/LCLSControls/CLI+Tool

2.
a.

b.
i.
ii.
iii.
iv.
v.

c.

i.
d.

i.
ii.
iii.

e.
i.
ii.
iii.

f.

3.
i.

4.
a.
b.
c.

d.
i.

e.
f.

i.
ii.
iii.

g.
i.

ii.
iii.

h.

i.
j.

5.

6.

a.
i.

1.
a.
b.
c.

d.
e.

2.

Figure out what we need to pass in from the runner to the backend to start the build container
and how this system can handle large number of requests
Possible things we need to start the build container

repo name
organization
branch
user
filepath to where the repo is checked out

Think about where we are going to store the builds, where the build container is doing the builds, we may want to seperate by user like
/sdf/group/ad/user1/component_name/branch

make script that maybe the runners can invoke (to pass in the vars)
Then we also want to think about where to keep the 'scripts' for building somewhere on s3df, so we don't have to bake the scripts into
the images. maybe /sdf/group/ad/eed/ad-build/build-scripts/

Possible scripts we need (this can be one or multiple scripts):
script to start the make or buildInstructions and enter the right filepath
script to log what part of the build system workflow are we in (Used for build system developers to debug failed builds due to
build system)

Create a deployment file for the build containers (may be minimal)
needs the volume mounted
the image
the name of the container (repo name + branch + unique id (automatically made))

jerry is working on trying to get x86/amd64 architecture to build not arm, then saw on s3df there are hundreds of packages installed, we
may or may not want to install a good amount of them onto our containers.

Build Workflow example
Build System Backend Flow - LCLSControls - SLAC Confluence (stanford.edu)

Create a simple hello world project,
DONE Add to Jira - we can use this as the test project, upload it to github, add it to the component db
try this with the mongodb for us to view - https://www.mongodb.com/products/tools/compass
create a basic build environment with a 'build.sh' script copied over. Push this image, and add its url to hello world component. This build
environment can be used by both developers and the build system.
DONE use the basic.yml workflow from the BuildSystem/ (which will be the workflow all 400 something repos under ad will have) -

See we can move the workflow to BuildSystem repo and all other repos can call it from there, like 'actions/checkout' can do like
'adbuild/build' this way any updates we roll out any repo can easily receive it

the workflow should eventually do a GET request to the db, to get the build environment image,
then spin up that new build environment image, 3 options to get the actual repo itself onto the new image

(ideal) Runner does an actions/checkout onto a certain directory on s3df which will be accessible to all pods
Runner does an actions/checkout and passes in the actual repo through a 'kubectl cp',
or probably pass in the url to the repo which it can then clone - issue with git authorization

Then signal to the new environment container to do a 'make', then we have 3 options
Have the environment container copy over a 'build.sh' script which does not get invoked when the container is spun up, but
when it is explicitly called with 'kubectl exec'
when you do 'kubectl exec' it can wait until the make is finished, then report back to actions that the build finished
it can signal the make, but report back to actions that the build continued at a certain container.

CAVEATS: we can assume that if there are no additional instructions on the component entry in the db, then we just do a vanilla make.
(Which is what most apps here do to build, at least for the iocs its true)
Then we also want the simple project packed up as a package (src code and executable).
Make sure we get the build output available to users, either to github actions, or point them to the container output (we may make a cli
command for it?)

Figure out the authentication automation for the runners. (at the moment i get the blob of config from https://k8s.slac.stanford.edu/ad-build-
: new solution: we are going to have only a couple 'orchestrator' containers that will do the kubectl commands, so only those need to be dev

authenticated)
Get the build system container running on the kluster (Altered to fit our Deploying Self-Hosted GitHub Actions Runners with Docker | TestDriven.io
situation)

Lets do it vanilla first (running build system container)
Create the image using base image: Package actions-runner (github.com)

push the docker image to a registry so anyone can pull it
From where the dockerfile is
'docker build --tag pnispero/gh-runner-image:latest .'
This step may change (make a docker account, then create a access token, which will allow you to login on
your shell)
'docker push pnispero/gh-runner-image:latest'
Output: pnispero/gh-runner-image - Docker Image | Docker Hub

Dockerfile (Here temporarily, these are the only 2 files you need to get this to work)

https://confluence.slac.stanford.edu/display/LCLSControls/Build+System+Backend+Flow
https://www.mongodb.com/products/tools/compass
https://k8s.slac.stanford.edu/ad-build-dev
https://k8s.slac.stanford.edu/ad-build-dev
https://testdriven.io/blog/github-actions-docker/
https://github.com/actions/runner/pkgs/container/actions-runner
https://hub.docker.com/r/pnispero/gh-runner-image

6.

a.
i.

2.

base
FROM ubuntu:22.04

set the github runner version
ARG RUNNER_VERSION="2.316.0"

update the base packages and add a non-sudo user
RUN apt-get update -y && apt-get upgrade -y && useradd -m docker

install python and the packages the your code depends on along with jq so we can
parse JSON
add additional packages as necessary
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
 curl jq build-essential libssl-dev libffi-dev python3 python3-venv python3-dev
python3-pip

cd into the user directory, download and unzip the github actions runner
RUN cd /home/docker && mkdir actions-runner && cd actions-runner \
 && curl -O -L https://github.com/actions/runner/releases/download
/v${RUNNER_VERSION}/actions-runner-linux-x64-${RUNNER_VERSION}.tar.gz \
 && tar xzf ./actions-runner-linux-x64-${RUNNER_VERSION}.tar.gz

install some additional dependencies
RUN chown -R docker ~docker && /home/docker/actions-runner/bin/installdependencies.sh

copy over the start.sh script
COPY start.sh start.sh

make the script executable
RUN chmod +x start.sh

since the config and run script for actions are not allowed to be run by root,
set the user to "docker" so all subsequent commands are run as the docker user
USER docker

set the entrypoint to the start.sh script
ENTRYPOINT ["./start.sh"]

start.sh

#!/bin/bash

ORGANIZATION=$ORGANIZATION
ACCESS_TOKEN=$ACCESS_TOKEN

Generate organization registration token
REG_TOKEN=$(curl -L \
 -X POST \
 -H "Accept: application/vnd.github+json" \
 -H "Authorization: Bearer ${ACCESS_TOKEN}" \
 -H "X-GitHub-Api-Version: 2022-11-28" \
 https://api.github.com/orgs/${ORGANIZATION}/actions/runners/registration-token |
jq .token --raw-output)

cd /home/docker/actions-runner

./config.sh --url https://github.com/${ORGANIZATION} --token ${REG_TOKEN}

cleanup() {
 echo "Removing runner..."
 ./config.sh remove --unattended --token ${REG_TOKEN}
}

trap 'cleanup; exit 130' INT
trap 'cleanup; exit 143' TERM

./run.sh & wait $!

6.

a.

ii.
iii.

iv.
v.

vi.
vii.

b.

i.

c.

do 'docker image ls' to ensure its there
Then you must be an organization administrator, and make a personal access token with the "admin:org" and "repo" scope to
create a registration token for an organization ()REST API endpoints for self-hosted runners - GitHub Docs
Copy the token, and use it in the next step
Run the docker image

docker run \
 --env ORGANIZATION=<ORG> \
 --env ACCESS_TOKEN=<PERSONAL-TOKEN> \
 --name runner1 \
 runner-image

Replace <ORG> with the organization name
Replace <PERSONAL-TOKEN> with the token you created above
And now your runner should be registered and running
When done testing make sure to 'ctrl+c' and 'stop' and 'remove' the container

Start the image using kubectl for our ad-build kubernetes cluster you created above

Start the image with environment variables
kubectl run gh-runner1 --image=pnispero/gh-runner-image --env="ORGANIZATION=<ORG>" --env="
ACCESS_TOKEN=<PERSONAL-TOKEN>"

Replace <ORG> with the organization name
Replace <PERSONAL-TOKEN> with the token you created above

REMEMBER IF STOPPING THE CONTAINER, give it a grace period so it has some time to remove itself and from the organization

kubectl delete --grace-period=15 pod gh-runner1

Sample request - but refer to the api docs (https://accel-webapp-dev.slac.stanford.edu/api-doc/?urls.primaryName=Core%20Build%
)20System

gets component list
curl -X 'GET' \
 'https://accel-webapp-dev.slac.stanford.edu/api/cbs/v1/component' \
 -H 'accept: application/json'

Other Basic

Deployment of an image (running container) ex: Using kubectl to Create a Deployment | Kubernetes

pnispero@PC100942:~$ kubectl create deployment kubernetes-bootcamp --image=gcr.io/google-samples/kubernetes-
bootcamp:v1
deployment.apps/kubernetes-bootcamp created
pnispero@PC100942:~$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kubernetes-bootcamp 1/1 1 1 6s
pnispero@PC100942:~$ kubectl delete deployment kubernetes-bootcamp
deployment.apps "kubernetes-bootcamp" deleted
pnispero@PC100942:~$ kubectl get deployments
No resources found in default namespace.
pnispero@PC100942:~$

https://docs.github.com/en/rest/actions/self-hosted-runners?apiVersion=2022-11-28#list-self-hosted-runners-for-an-organization--fine-grained-access-tokens
https://accel-webapp-dev.slac.stanford.edu/api-doc/?urls.primaryName=Core%20Build%20System
https://accel-webapp-dev.slac.stanford.edu/api-doc/?urls.primaryName=Core%20Build%20System
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/

	Kubernetes cluster ad-build

