
1.
2.

3.

4.
5.
6.
7.
8.
9.

10.
11.

12.

1.

Procmgr To Slurm

Configless setup
Slurm Feature (Constraint)
Heterogeneous jobs and constraint
Slow start-up time for heterogeneous jobs
Running job steps in parallel
Update 20240312

TODO:

job management: support restart, scancel with signal? support restart an individual process, . show completed jobs
check for existing user/platform. Note: --dependency flag can be used to check for unique jobname but jobs are still queued. Better to exit if the
same jobname is found. See the unique format here: ls ~tmoopr/.psdaq/. Show details of conflicting jobs. Job comment (right now is unique) is
used to check for existing jobs for ALL users.
procstat like unbuffered output style. Maybe https://portal.supercomputing.wales/index.php/index/slurm/interactive-use-job-arrays/x11-

. Note: you can x11-forward using for example, gui-forwarding/

slurm.conf

salloc -n1 --x11 srun -n1 --x11 xterm -hold -e "python test_run.py"

This --x11 in srun also works with sbatch when $DISPLAY is exported correctly. See lcls2/psdaq/psdaq/slurm for how it's implemented.
check if slurm avoids weka cores. It looks like slurm tries to avoid weka cores automatically.
Multi-threading process. This was possible in the past but possibly with recent changes, it's not working.
How to identify what a resource is for drp (Bandwidth/ Memory/ physical cores for each process).
Documentation/How to
Testing goals: TMO, RIX, other long-live processes, high rate 71kHz
slurm.conf: configless setup still not complete, set MaxTime=UNLIMITED, no limit on memory, no hyper-threading, make sure slurm version is
consistent
Automatically add back power-cycled nodes.
Check why collect_host=drp-srcf-mon001 doesn't work.

2024-05-28 15:23:33,483 None-DaqControl[38248]: <E> getPlatform() Exception: Operation cannot be
accomplished in current state

New 'cores' field in cnf file:

{ host: 'drp-srcf-cmp004', cores: '10' id:'tmo_fim1_0', flags:'spu', env:epics_env, cmd:drp_cmd0+' -l
0x10 -D wave8 -k epics_prefix=MR3K4:FIM:W8:01'},

For processes that start with 'drp ', add -W with #cores - 4 (pgpreader, collector, ebreceiver, & filewriter).

 For ami-node_*

{ host:worker_node, id:f'ami-node_{N}', flags:'s', env:epics_env,
 cmd:f'ami-node --hutch {hutch} --prometheus-dir {prom_dir} -N {N} -n
{ami_workers_per_node} -H {ami_manager_node} --log-level warning worker -b {heartbeat_period} psana://shmem=
{hutch}' }

Note on multi-user access:

Conflicts over activedet temp (yaml) files?
AMI temp or user-created files

Slurm manages resources (CPUs, GPUs)

First person to talk to is Ric

In principle we have our own customizable slurm installation on drp-srcf-*, but might still need work/tweaking from IT.

Can we extend slurm to manage our resources, determined by kcu firmware? e.g.

rix timing system fiber connection

https://portal.supercomputing.wales/index.php/index/slurm/interactive-use-job-arrays/x11-gui-forwarding/
https://portal.supercomputing.wales/index.php/index/slurm/interactive-use-job-arrays/x11-gui-forwarding/

cameralink node
high-rate timing nodes
low-rate timing nodes (epics)
hsd nodes
generic (wave8) nodes

Slurm features to look into (could also look into other tools (airflow?) if necessary):

job arrays
job steps
heterogeneous job support

Conceptually want:

"sbatch tmo.cnf" (instead of "procmgr start tmo.cnf")
tmo.cnf has

typical timing system on cmp028: "drp -P tmo -D ts ..."
typical control.py on mon001: "control -P tmo ..."
special localhost: "control_gui -P tmo -B DAQ:NEH" (this is unusual because it runs on the localhost and has a gui, only localhost
processes have gui's with procmgr)

critical features (if we could do this we may be able to replace procmgr) *underlined = done:
keep node allocations and command lines hardwired (like existing .cnf)
demo: run control/timing processes
need a replacement for procstat (could start with a command line version, do gui later)
if one job crashes, don't want the whole job to exit
different daq processes need different environment (pva detectors in particular, you can see this in the cnf)
would like python, not a bash interface for the users (maybe reuse existing cnf?)
need per-process log files

error of each process should go to that process log file --> process error (printout) goes to the per-process log while sigkill goes
to slurm output
header of the log file (see example from procgmr)

support flags (p - attach plaform no., x - window, s - delay (ignored/use slurm), u (ignored))
two people can't run the tmo daq at the same time (use slurm detail like nodelist and jobname or comment to check if another user trying
to use the same detectors/ timing). Note: it looks like with --dependency=singleton, the same user can only run one 'jobname' at a time.
Preferred solution is to print out error message and exit (no pending job) when the same job name is submitted.
option to run each command in the cnf file as a single job or single job step
multithread process is allowed even when single cpu is asked by slurm yes, per top, we see more than one drp processes running on
different cores when job step is created with -n1.
(this already exists, currently written into ~tmoopr/.psdaq, may need that permissions work right since now daq could run as "cpo"?)
"activedet": remembering the previously selected detectors? could we use "sacct"? maybe we could add info to sacct? currently control.
py puts the info in files in directories like ~tmoopr/.psdaq. UPDATE: It looks like control_gui stores the values (selected detectors)
directly in configdb using zmq. We probably don't need anything new for this. See below for more detail (when running control_gui with --
loglevel DEBUG):

nice-to-have features:
support interactive log file access like procstat
support live xterm for processes like procstat, and with .cnf "x" flag
support different conda envs for different detectors

the "dream":
understand which nodes are camlink nodes ("resource management")
dynamically allocate requested types of nodes
(hard, do as a second step?) would change the BOS connections so the right detectors were connected to the allocated nodes

Note from Ric 3/1/2024:

I thought that maybe the first thing to try would be to figure out how to launch a process that brings up a GUI, e.g., groupca or xpmpva, or maybe even
start simpler with xeyes or xclock. The main idea was to test the ability of telling slurm that the process that you want to run is an X11 application, which I
read in the docs it can do.
The next thing might be to try to bring up the DAQ using slurm and thus thinking about what the slurm description file would look like. Can we use
something like the .cnf? Can we automatically convert the .cnfs to whatever slurm requires? Or do we need to start from scratch? For this step I’m
thinking we would still have to specify everything, like the node each process runs on.
The last thing I looked into a little bit was the idea of defining resources to slurm. For this I thought I’d need some setup to try things out on, which resulted
in Jira ECS-4017 (I don’t think anything was done though). Chris Ford was also working on this project and he suggested setting up a virtual machine with
a private slurm setup I could tinker with (I haven’t figured out how to do that, yet). Anyway, the idea of the resources is that based on what each DRP
needs (e.g., detector type, KCU firmware type, a GPU, X11, etc.), resources would be defined to slurm so that when you launch a DAQ, it would allocate
the nodes according to the resources needed and start the processes on them. Perhaps at some point in the future we could even have it modify the
connections in the BOS to connect a detector to an available host that has the right KCU firmware, thus making RIX hosts available to TMO and vice versa.
I think that’s about as far as I got. Let me know if you have questions. I have to take Rachel to a doctor’s appointment at 1 so I think I’ll be out until 3 or
so. We can talk later, if you prefer. I’ll take a look at the link as soon as I can. Feel free to add the above to that if you think it would be helpful.

Configless setup

To share the slurm.conf file on all compute nodes, we can modify the slurm.conf file on the control node with following parameter:

slurm.conf

SlurmctldParameters=enable_configless

Run scontrol reconfig to enable the change. On each compute node, add the following argument to slurmd in sysconfig

/etc/sysconfig/slurmd

SLURMD_OPTIONS="--conf-server psslurm-drp"

Restart the compute node with

systemctl restart slurmd

Slurm Feature (Constraint)

We can specify a list of features (drp processes such as timing_0, teb0, etc.) for each compute node in slurm.conf. The following showing an example of
Node description section in /etc/slurm/slurm.conf on psslurm-drp.

slurm.conf

Nodes description
DRP SRCF as analysis cluster
NodeName=drp-srcf-cmp035 RealMemory=128000 Sockets=1 CoresPerSocket=64 ThreadsPerCore=1 CoreSpecCount=3
Feature=timing_0,teb0,control
NodeName=drp-srcf-cmp036 RealMemory=128000 Sockets=1 CoresPerSocket=64 ThreadsPerCore=1 CoreSpecCount=3
Feature=control_gui

After saving the file, run

slurm.conf

scontrol reconfig

This will update the cluster feature table. You can view the available features by running:

slurm.conf

monarin@drp-srcf-cmp036 ~ sinfo -o "%30N %10c %10m %35f %10G "
NODELIST CPUS MEMORY AVAIL_FEATURES GRES
drp-srcf-cmp[031,043] 64 128000 (null) (null)
drp-srcf-cmp035 64 128000 timing_0,teb0,control (null)
drp-srcf-cmp036 64 128000 control_gui (null)

To submit a job requiring a feature, you can use --constraint flag:

slurm.conf

#!/bin/bash
#SBATCH --partition=drpq
#SBATCH --job-name=main
#SBATCH --constraint=timing_0,teb0,control --ntasks=3

Heterogeneous jobs and constraint

Heterogeneous job concept allows use to spread allocations of physical cores unevenly. For drp processes, we can do this by grouping all the processes
that run on the same node in one heterogeneous group (one node per group).

With slurm constraint (or feature), a node can be marked with a list of supporting drp processes. E.g.

Node AvailableFeatures

drp-srcf-cmp035 timing,teb,control

drp-srcf-cmp036 control

Creating a heterogeneous job with groups that share the same node is NOT possible for slurm (slurm handles heterogeneous jobs with backfill and all the
job steps within it must be fulfilled prior to the start of the job). To make sure that we create heterogeneous groups that do not overlap with each other, we
need to pack drp processes onto available nodes.

Slow start-up time for heterogeneous jobs

Slurm backfill scheduler will delay heterogeneous jobs initiation attempts until after the rest of the queue has been processed (see https://slurm.schedmd.
). To override this and set priority for heterogeneous jobs as highest, we need to add the following in slurm.conf.com/slurm.conf.html

slurm.conf

SchedulerParameters=bf_hetjob_immediate,bf_hetjob_prio=max

The setting above helps speed up the StartTime for heterogeneous jobs down to around 1-2 s (from 20s or more). However, the slow StartTime still can
ben observed when we start the same heterogenous job right after canceling one.

https://slurm.schedmd.com/slurm.conf.html
https://slurm.schedmd.com/slurm.conf.html

slurm.conf

monarin@psslurm-drp ~ scontrol show jobid 489853
JobId=489853 HetJobId=489853 HetJobOffset=0 JobName=main
 HetJobIdSet=489853-489854
 UserId=monarin(12682) GroupId=xu(1106) MCS_label=N/A
 Priority=130 Nice=0 Account=(null) QOS=normal
 JobState=RUNNING Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:00:11 TimeLimit=12:00:00 TimeMin=N/A
 SubmitTime=2024-04-22T15:00:48 EligibleTime=2024-04-22T15:00:48
 AccrueTime=2024-04-22T15:00:48
 StartTime=2024-04-22T15:01:04 EndTime=2024-04-23T03:01:04 Deadline=N/A
 PreemptEligibleTime=2024-04-22T15:01:04 PreemptTime=None
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2024-04-22T15:01:04
 Partition=drpq AllocNode:Sid=drp-srcf-cmp036:15356
 ReqNodeList=drp-srcf-cmp035 ExcNodeList=drp-srcf-cmp036
 NodeList=drp-srcf-cmp035
 BatchHost=drp-srcf-cmp035
 NumNodes=1 NumCPUs=3 NumTasks=3 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 TRES=cpu=3,node=1,billing=3
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
 Features=(null) DelayBoot=00:00:00
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=(null)
 WorkDir=/cds/home/m/monarin/lcls2/psdaq/psdaq/slurm
 StdErr=/cds/home/m/monarin/2024/04/22_15:00:48_drp-srcf-cmp036:slurm.log
 StdIn=/dev/null
 StdOut=/cds/home/m/monarin/2024/04/22_15:00:48_drp-srcf-cmp036:slurm.log
 Power=
 NtasksPerTRES:0

JobId=489854 HetJobId=489853 HetJobOffset=1 JobName=main
 HetJobIdSet=489853-489854
 UserId=monarin(12682) GroupId=xu(1106) MCS_label=N/A
 Priority=126 Nice=0 Account=(null) QOS=normal
 JobState=RUNNING Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:00:11 TimeLimit=12:00:00 TimeMin=N/A
 SubmitTime=2024-04-22T15:00:48 EligibleTime=2024-04-22T15:00:48
 AccrueTime=2024-04-22T15:00:48
 StartTime=2024-04-22T15:01:04 EndTime=2024-04-23T03:01:04 Deadline=N/A
 PreemptEligibleTime=2024-04-22T15:01:04 PreemptTime=None
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2024-04-22T15:01:04
 Partition=drpq AllocNode:Sid=drp-srcf-cmp036:15356
 ReqNodeList=drp-srcf-cmp036 ExcNodeList=drp-srcf-cmp035
 NodeList=drp-srcf-cmp036 SchedNodeList=drp-srcf-cmp036
 BatchHost=drp-srcf-cmp036
 NumNodes=1 NumCPUs=1 NumTasks=1 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 TRES=cpu=1,node=1,billing=1
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
 Features=(null) DelayBoot=00:00:00
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=(null)
 WorkDir=/cds/home/m/monarin/lcls2/psdaq/psdaq/slurm
 StdErr=/cds/home/m/monarin/2024/04/22_15:00:48_drp-srcf-cmp036:slurm.log
 StdIn=/dev/null
 StdOut=/cds/home/m/monarin/2024/04/22_15:00:48_drp-srcf-cmp036:slurm.log
 Power=
 NtasksPerTRES:0

The problem is more amplified when --constraint flag is used instead of --nodelist. We observed a wait time of up to 22s in the case of starting a
heterogeneous job withe constraint right after cancelling one.

slurm.conf

monarin@psslurm-drp ~ scontrol show jobid 489849
JobId=489849 HetJobId=489849 HetJobOffset=0 JobName=main
 HetJobIdSet=489849-489850
 UserId=monarin(12682) GroupId=xu(1106) MCS_label=N/A
 Priority=130 Nice=0 Account=(null) QOS=normal
 JobState=RUNNING Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:01:09 TimeLimit=12:00:00 TimeMin=N/A
 SubmitTime=2024-04-22T14:53:55 EligibleTime=2024-04-22T14:53:55
 AccrueTime=2024-04-22T14:53:55
 StartTime=2024-04-22T14:54:22 EndTime=2024-04-23T02:54:22 Deadline=N/A
 PreemptEligibleTime=2024-04-22T14:54:22 PreemptTime=None
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2024-04-22T14:54:22
 Partition=drpq AllocNode:Sid=drp-srcf-cmp036:15356
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=drp-srcf-cmp035
 BatchHost=drp-srcf-cmp035
 NumNodes=1 NumCPUs=3 NumTasks=3 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 TRES=cpu=3,node=1,billing=3
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
 Features=timing_0&teb0&control DelayBoot=00:00:00
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=(null)
 WorkDir=/cds/home/m/monarin/lcls2/psdaq/psdaq/slurm
 StdErr=/cds/home/m/monarin/2024/04/22_14:53:55_drp-srcf-cmp036:slurm.log
 StdIn=/dev/null
 StdOut=/cds/home/m/monarin/2024/04/22_14:53:55_drp-srcf-cmp036:slurm.log
 Power=
 NtasksPerTRES:0

JobId=489850 HetJobId=489849 HetJobOffset=1 JobName=main
 HetJobIdSet=489849-489850
 UserId=monarin(12682) GroupId=xu(1106) MCS_label=N/A
 Priority=126 Nice=0 Account=(null) QOS=normal
 JobState=RUNNING Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:01:09 TimeLimit=12:00:00 TimeMin=N/A
 SubmitTime=2024-04-22T14:53:55 EligibleTime=2024-04-22T14:53:55
 AccrueTime=2024-04-22T14:53:55
 StartTime=2024-04-22T14:54:22 EndTime=2024-04-23T02:54:22 Deadline=N/A
 PreemptEligibleTime=2024-04-22T14:54:22 PreemptTime=None
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2024-04-22T14:54:22
 Partition=drpq AllocNode:Sid=drp-srcf-cmp036:15356
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=drp-srcf-cmp036 SchedNodeList=drp-srcf-cmp036
 BatchHost=drp-srcf-cmp036
 NumNodes=1 NumCPUs=1 NumTasks=1 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 TRES=cpu=1,node=1,billing=1
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
 Features=control_gui DelayBoot=00:00:00
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=(null)
 WorkDir=/cds/home/m/monarin/lcls2/psdaq/psdaq/slurm
 StdErr=/cds/home/m/monarin/2024/04/22_14:53:55_drp-srcf-cmp036:slurm.log
 StdIn=/dev/null
 StdOut=/cds/home/m/monarin/2024/04/22_14:53:55_drp-srcf-cmp036:slurm.log
 Power=
 NtasksPerTRES:0

Running job steps in parallel

Here's an example script that shows how we can run job steps in parallel (with &).

1.
2.

3.

4.

job_step.sh

#!/bin/bash

#SBATCH --job-name parallel
#SBATCH --output slurm-%j.out
#SBATCH --ntasks=3 ## number of tasks (analyses) to run
#SBATCH --cpus-per-task=2 ## the number of threads allocated to each task
#SBATCH --time=0-00:10:00

Execute job steps
srun --ntasks=1 --nodes=1 --cpus-per-task=$SLURM_CPUS_PER_TASK bash -c "sleep 2; echo 'hello 1'" &
srun --ntasks=1 --nodes=1 --cpus-per-task=$SLURM_CPUS_PER_TASK bash -c "sleep 4; echo 'hello 2'" &
srun --ntasks=1 --nodes=1 --cpus-per-task=$SLURM_CPUS_PER_TASK bash -c "sleep 8; echo 'hello 3'" &
wait

For s3df, this works as you can see that the three job steps start at the same time.

(ps-4.6.3) sacct -j 41486534 --format=JobID,Start,End,Elapsed,REQCPUS,ALLOCTRES%30
JobID Start End Elapsed ReqCPUS AllocTRES
------------ ------------------- ------------------- ---------- -------- ------------------------------
41486534 2024-03-14T17:58:03 2024-03-14T17:58:12 00:00:09 6 billing=6,cpu=6,mem=6G,node=1
41486534.ba+ 2024-03-14T17:58:03 2024-03-14T17:58:12 00:00:09 6 cpu=6,mem=6G,node=1
41486534.ex+ 2024-03-14T17:58:03 2024-03-14T17:58:12 00:00:09 6 billing=6,cpu=6,mem=6G,node=1
41486534.0 2024-03-14T17:58:04 2024-03-14T17:58:06 00:00:02 2 cpu=2,mem=2G,node=1
41486534.1 2024-03-14T17:58:04 2024-03-14T17:58:08 00:00:04 2 cpu=2,mem=2G,node=1
41486534.2 2024-03-14T17:58:04 2024-03-14T17:58:12 00:00:08 2 cpu=2,mem=2G,node=1

For drp nodes, running this script shows that the second or more job steps wait for the previous one to finish.

(ps-4.6.3) monarin@drp-srcf-eb001 (master) slurm sacct -j 625799 --format=JobID,Start,End,Elapsed,REQCPUS,
ALLOCTRES%30
 JobID Start End Elapsed ReqCPUS AllocTRES
------------ ------------------- ------------------- ---------- -------- ------------------------------
625799 2024-03-14T18:11:36 2024-03-14T18:11:45 00:00:09 6 billing=6,cpu=6,node=1
625799.batch 2024-03-14T18:11:36 2024-03-14T18:11:45 00:00:09 6 cpu=6,mem=0,node=1
625799.0 2024-03-14T18:11:36 2024-03-14T18:11:38 00:00:02 6 cpu=6,mem=6G,node=1
625799.1 2024-03-14T18:11:38 2024-03-14T18:11:42 00:00:04 6 cpu=6,mem=6G,node=1
625799.2 2024-03-14T18:11:42 2024-03-14T18:11:45 00:00:03 6 cpu=6,mem=6G,node=1

The example script above came from this page . It also mentioned about hyperthreading and https://hpc.nmsu.edu/discovery/slurm/tasks/parallel-execution/
how this impacts slurm scheduling. I tried both changing --cpus-per-task=1 and --hint=nomultithread but nothing changed.

Update 20240312

We think job steps (srun) will be able to satisfy the features (listed below) that we need to replace procmgr.
Job array isn't a good option because it seems to fit with single cmd running in parallel model (we have different command/ environment for each
process).
We tested following features for srun:

If one step dies, what happen? other steps continue
Each job step can have independent --output and --error to send their output and error to. Note that anything related to slurm error will
be written sbatch --output file.
Can we use squeue/scontrol to check job step details? –> yes. Below shows job details of a single job with three job steps.

(ps-4.6.3) sacct -j 41308291
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
41308291 parallel milano lcls:data 6 RUNNING 0:0
41308291.ba+ batch lcls:data 6 RUNNING 0:0
41308291.ex+ extern lcls:data 6 RUNNING 0:0
41308291.0 hello2 lcls:data 2 RUNNING 0:0
41308291.1 hello3 lcls:data 2 RUNNING 0:0
41308291.2 hello1 lcls:data 2 RUNNING 0:0

https://hpc.nmsu.edu/discovery/slurm/tasks/parallel-execution/

4.

5.

6.

Can we start/cancel individual steps? you can cancel individual step

(ps-4.6.3) scancel 41308291.1
(ps-4.6.3) sacct -j 41308291
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
41308291 parallel milano lcls:data 6 RUNNING 0:0
41308291.ba+ batch lcls:data 6 RUNNING 0:0
41308291.ex+ extern lcls:data 6 RUNNING 0:0
41308291.0 hello2 lcls:data 2 RUNNING 0:0
41308291.1 hello3 lcls:data 2 CANCELLED+ 0:9
41308291.2 hello1 lcls:data 2 RUNNING 0:0

You can only restart the entire job:

(ps-4.6.3) scontrol requeue 41308291

(DREAM) Can we specify resource (eg. ask for a gpu node)? yes

srun --partition ampere --account lcls:data -n 1 --time=00:10:00 --gpus=1 --pty /bin/bash

Note on viewing slurm cluster info:

monarin@sdfiana002 ~ sinfo -o "%20N %10c %10m %95f %10G "
NODELIST CPUS MEMORY
AVAIL_FEATURES
GRES
sdfrome[003-123] 128 512000 CPU_GEN:RME,CPU_SKU:7702,CPU_FRQ:2.00
GHz (null)
sdfmilan[001-072,101 128 512000 CPU_GEN:RME,CPU_SKU:7713,CPU_FRQ:2.00
GHz (null)
sdfampere[001-023] 128 1024000 CPU_GEN:RME,CPU_SKU:7542,CPU_FRQ:2.10GHz,GPU_GEN:AMP,
GPU_SKU:A100,GPU_MEM:40GB,GPU_CC:8.0 gpu:a100:4
sdfturing[001-016] 48 191552 CPU_GEN:SKX,CPU_SKU:5118,CPU_FRQ:2.30GHz,GPU_GEN:TUR,
GPU_SKU:RTX2080TI,GPU_MEM:11GB,GPU_CC:7.5 gpu:geforc
more info about sinfo format:
https://slurm.schedmd.com/sinfo.html#SECTION_EXAMPLES

(DREAM) Can we swithc the BOS connection when the resources have been allocated"

	Procmgr To Slurm

