
EpixM

Issues
Miscellaneous Info
Fiber Requirements for Prototype
Running devGui
Pedestal Scans and Charge Injection
April 2024 Beamtime Requirements
ConfigDb
Detector Interface: DAQ-Segments With Multiple Free-Floating ASICs
Intermittent ASIC Lanes
Running the DAQ

Details

Issues
Issues to consider:

(done) Move to Rogue 6: v 1.0.0
current configuration time is long at 34s

some progress on this: now 10s according to Ric (check that we're down to 2-3 seconds that rogue sees?)
fiber-power monitoring on the detector side and kcu1500

not there yet on march 22, 2024
(done for the detector as of v1.1.5 of epix-hr-m-320k)

(done?) have to manually lock the lanes between ASICs and managing FPGA by running 1000 events: feels awkward-ish
what does epixHR do?

not all lanes in an ASIC lock (can perhaps be fixed with improved delay settings)
most have 3-5 lanes that don't function or are unstable (out of 24) for unit 0xbf

data is currently scrambled (not natural order)
ric is descrambling ASICS in software, but would like to move to firmware

(done) remove epixViewer imports in _Root.py
on May 11, 2024 lost timing link from epixM to xpm7 (had to power cycle). Include Julian's latest link fixes in your firmware.
add batcherEventBuilder to kcu1500

use Lcls2EpixHrXilinxKcu1500Pgp4_10Gbps, which contains a BEB
make the ePixM devGui compatible

(done) remove 8 bytes of null padding between timing header elements
fix set-registers-before-each-charge-injection-event issue

Implement FPGA registers to rearm ASICs on each event when register is true?test
(done) Split prepareChargeInjection() into 2 functions, the first taking first and last column (as now) and the second taking a 384 element numpy
array (e.g., setupChargeInjection(self, asicIndex, lane_selected, pulserValue))
(done) Since the scan work, normal data taking runs now see dropped and short frames from ASIC 0
DAQ has no environmental monitoring support as yet

needs board re-spin (boards in layout on March 22, 2024)
will epixM automatically increase charge with each injection pulse like epixHR? Dionisio thinks probably not (will double-check with Lorenzo).
(done?) zmq server port gone with rogue6? needs to be re-added?
need to know common-mode "bank" info

each lane?
other structures for ADC?

v1.1.5 of epix-hr-m-320k introduced per detector instance yaml files, which implies that if a detector is swapped out, either:
the configDb for the given detector alias must be reinitialized, or
a different detector alias and configDb instance must be set up

requires corresponding .cnf changes

Miscellaneous Info
Asic readout order:

The ASICs are in this format. ASIC 0 and 1 rotated 180 degree (viewed looking at the sensor):

0 1

3 2

Currently running on drp-neh-cmp003 and using (perhaps incorrectly) tdetsim.service.

(done) change to kcu.service

Auto-ranging, cannot be run in fixed-range mode (maybe Lorenzo is thinking about this?)

GitHub repo: (currently using branch tempRelease)https://github.com/slaclab/epix-hr-m-320k

currently has 4 ASICs in a 2x2 configuration (one piece of silicon). the size of the ASIC is 192*384 columns (more than twice as big as EpixHR ASIC)

https://github.com/slaclab/epix-hr-m-320k

each ASIC is its own lane

firmware defaults to LCLS-II timing

Need to ask Chris Kenney or Lorenzo about precise panel geometries so Mikhail can support the geometry in psana2

need this setting in devGui under "Root":

3 means 168MHz clock, and the 4 1's initialize (includes a reset plus configuration) the ASICs, which includes loading config files: the config files that are
used are in config/ePixHRM320k_ASIC_u1_PLLBypass.yml (and u2,u3,u4 for other ASICs). Currently the 4 configurations are identical, apart from a
module name. Also configures the firmware of a single "managing" FPGA (e.g. batching event-builder).

As of v1.1.5, InitASIC() is called with 4, 1, 1, 1, 1 where 4 means 'use a default on-board clock configuration'.
As of v1.1.6, some .yml filenames have changed. Some are now detector specific and so include the digital board's serial number.

Issue: the serial links between the managing FPGA and the ASICs don't always lock until a number of frames have been transmitted (may want to fix this
more robustly in the long-term). Short-term workaround: call root.hwTrigger(frames, rate) for ~1000 frames at rate 1000 (1kHz).

Currently the data needs to be descrambled in software. There is a plan to eventually descramble in firmware.

Plan: run the software/notebook/maximumRateTest.ipynb

Introductory script (likely out of date):

Setup the library
import pyrogue as pr
import os, sys
import matplotlib.pyplot as plt
import time
import datetime
import numpy as np
import math
import pprint
import inspect
top_level=f'{os.getcwd()}/../'
rootTopLevel = top_level+'script/'
pr.addLibraryPath(rootTopLevel)

import setupLibPaths

import ePix320kM as devBoard

args = None

ONLY RUN ONCE!
Defining root
root = devBoard.Root(
 top_level = rootTopLevel,
 dev = '/dev/datadev_0',

 pollEn = False,
 initRead = True,
 serverPort = 9099,
 pciePgpEn = True,
)
root.start()

example showing a read
AxiVersion = root.Core.AxiVersion
print ('###')
print ('# Firmware Version #')
print ('###')
AxiVersion.printStatus()
print ('###')

Useful short names
APP = root.App
AXIV = root.Core.AxiVersion
ASICTOP = APP.AsicTop
TRIG = ASICTOP.TriggerRegisters
ASIC0 = APP.Mv2Asic[0]
ASIC1 = APP.Mv2Asic[1]
ASIC2 = APP.Mv2Asic[2]
ASIC3 = APP.Mv2Asic[3]
HSDAC = APP.Dac.FastDac
PKREG = [None] * 4
PKREG[0] = ASICTOP.DigAsicStrmRegisters0
PKREG[1] = ASICTOP.DigAsicStrmRegisters1
PKREG[2] = ASICTOP.DigAsicStrmRegisters2
PKREG[3] = ASICTOP.DigAsicStrmRegisters3
BATCHER0 = ASICTOP.BatcherEventBuilder0
BATCHER1 = ASICTOP.BatcherEventBuilder1
BATCHER2 = ASICTOP.BatcherEventBuilder2
BATCHER3 = ASICTOP.BatcherEventBuilder3
DEBUG0 = root._dbg[0]
DEBUG1 = root._dbg[1]
DEBUG2 = root._dbg[2]
DEBUG3 = root._dbg[3]
DATARCV0 = root.DataReceiver0
DATARCV1 = root.DataReceiver1
DATARCV2 = root.DataReceiver2
DATARCV3 = root.DataReceiver3
FULLRATERCV0 = root.fullRateDataReceiver[0]
FULLRATERCV1 = root.fullRateDataReceiver[1]
FULLRATERCV2 = root.fullRateDataReceiver[2]
FULLRATERCV3 = root.fullRateDataReceiver[3]
DAC = APP.Dac
REGCTRL = ASICTOP.RegisterControlDualClock

Configure clock to 168 MHz and configures all ASICS
root.InitASIC([3,1,1,1,1])

disable some software rogue data receivers
root.disableAndCleanAllFullRateDataRcv()
root.enableDataRcv(False)
root.enableDataDebug(False)

#run some triggers and exercise lanes and locks
frames = 5000
rate = 1000

root.hwTrigger(frames, rate)

#get locked lanes
root.getLaneLocks()

#Enable data receivers and run some triggers
root.enableDataRcv(True)
root.enableAllAsics(True)
root.Trigger() # one event via software trigger

Obtain descrambled single frame data from ASICs from DataReceiver. Data receiver is down sampled.
root.printDataReceiverStatus()

frame = [None for i in range(4)]
for asicIndex in range(4):
 frame[asicIndex] = getattr(root, f"DataReceiver{asicIndex}").Data.get()

#frame dimensions
for asicIndex in range(root.numOfAsics):
 print(np.shape(frame[asicIndex]))

#plot image
plt.subplots(2,2,figsize=(17,17))
for asicIndex in range(root.numOfAsics):
 if asicIndex == 3 :
 plt.subplot(2,2,3)
 elif asicIndex == 2 :
 plt.subplot(2,2,4)
 else :
 plt.subplot(2,2,asicIndex+1)

 if np.shape(frame[asicIndex])[0] != 1 :
 plt.imshow(frame[asicIndex])
 plt.xlabel("ASIC {}".format(asicIndex))
 plt.colorbar()
 else :
 plt.xlabel("ASIC {}: No data".format(asicIndex))

Teststand: (timing is left fiber, registers are on middle MPO8 fiber, data is on right MPO8 fiber)

To lock the lanes:

App->AsicTop->TriggerRegistersSetAutoTrigger (set to 1000 and hit enter)

numberTrigger set to 5000

StartautoTrigger (exec)

Do "Read All" at the bottom and check that AcqCount and DaqCount are 5000

StopTriggers

View state of locks with AppSspMonGrp[0:3] look at "Locked" register. Total of 24 lanes in each asic (should be 0xffffff). Can still run even if not all links
are locked: disable lanes that are not functioning. Saw between 0 and 6 lanes not locked for asics 0-3. Mostly reproducible failing lane numbers.

App->AsicTopDigAsicStrmRegisters[0:3] set "DisableLane" to turn off non-locked lanes. A single unlocked lane that is not disabled will prevent frames
from being transmitted by firmware.

Enable the software receivers via DataReceiver[0:3] with RxEnable. Hit "Trigger" to generate one software trigger. In principle can view an image with
DisplayViewer[0:3], but saw a pydm error when we tried this.

To run with XPM triggers, go to the usual TriggerEventManagerTriggerEventBuffer[1] and set "Partition" to the readout group: this is the DAQ
trigger. TriggerEventBuffer[0] is the Run Trigger.

To see trigger counts go to AsicTopTriggerRegisters and EXEC "SetTimingTrigger" and then do a "Read All" to watch for counters to increment (AcqCount
and DaqCount). Did two things: set TriggerEventBuffer[0] (the run trigger) to also fire on the readout group and set AsicTop->TriggerRegistersPgpTrigEn
to True and then we saw it count. AcqCount counts run triggers, and the DaqCount counts daq triggers. Can see it in the DataReceiver "FrameCount"

Dawood writes: Chris, I just noticed that the batchers have the register Bypass set to 1. That needs to become 0 when we using timing from the timing
fiber for all 4 ASICS.

Fiber Requirements for Prototype

For MFX beam time Phil requested 6 fiber pairs plus spares, eventually 24: - ECS-3992 Getting issue details... STATUS

cpo has a message from Omar dated Oct. 2, 2023 that says there are 6 fiber pairs between room 208 and mfx.

Dionisio wrote about the fiber pair count requirement for the prototype detector:
Looking at the git repo I would think that the minimum number of fibers is 7 but please https://github.com/slaclab/epix-hr-m-320k @Dawood Alnajjar
confirm this

Lane[0].VC[0] = Data[0]
Lane[1].VC[0] = Data[1]
Lane[2].VC[0] = Data[2]
Lane[3].VC[0] = Data[3]

Lane[5].VC[0] = SRPv3
Lane[5].VC[1] = software trigger (ssiCmd)
Lane[5].VC[2] = XVC
-Lane[6].VC[0] = slow monitoring[1:0]
- [1] = Power and Communication Board
- [0] = Digital Board

Lane[11] = LCLS-II Timing

Running devGui
Using XilinxKcu1500Pgp4_10Gbps mcs files from pgp-pcie-apps GitHub repo

(need to run from the "script" directory at the moment) "python script/devGui.py --pciePgpEn 1 --boardType XilinKcu1500". or to run with via the zmq port:
"python devGui.py --serverPort 9200 --pciePgpEn 1" (zmq port defaults to 9100, but that port was in use in the test stand). or to ignore the data streams:
"python devGui.py --boardType XilinxKcu1500 --dev /dev/datadev_0 --pciePgpEn 1 --justCtrl 1"

For kcu1500 devGui use pgp-pcie-apps directory and run "python scripts/PgpMonitor.py --numLane 8 --boardType XilinxKcu1500". Currently (April 1,
2024) this still requires rogue5 in ps-4.6.1.

Pedestal Scans and Charge Injection
(documents from Dionisio, Lorenzo and Dawood)

ePixM: gain modes, , Charge Injection Charge injection with python using helper functions

(from Conny on Jan. 24 2024)

As you mentioned, this detector only has one gain mode, which is an outranging mode. However, the idea is to create two additional “fixed gain modes”
currently referred to as soft fixed modes. These modes are created by changing the switching point of the auto-ranging mode. So for the SL, the switching
point is moved below the baseline and we are always switched, and for SH the switching point is all the way up the dynamic range, so the detector never
switches. As such, unlike the current generation of epix detectors which moves between gain modes by changing the tr_bit and the pixel config matrix
value (ePixM do not contain registers that change the functionality of the pixels), the soft gain modes will be moved into by changing the following
registers (Ric says these registers are settable per-asic):

Mode CompTH_ePixM Precharge_DAC_ePixM

Auto-gain 12 45

Soft High 0 45

Soft Low 63 50

https://jira.slac.stanford.edu/browse/ECS-3992
https://github.com/slaclab/epix-hr-m-320k
https://slac.slack.com/team/U02QN1UJ2G0
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=392838981
https://confluence.slac.stanford.edu/display/ppareg/Charge+Injection
https://confluence.slac.stanford.edu/display/ppareg/Charge+injection+with+python+using+helper+functions

Here the CompTH_ePixM register defines the location of the switching point. The values of these registers are subject to change as we start to
characterize the detector and might change a bit when we optimize the performance. So, for a pedestal script, we would likely want to cycle through these
settings and collect ~2000 frames in each cycle to determine their relative pedestal maps (AHL, SH,SM).

From Dionisio: Speaking with Lorenzo, the Precharge_DAC changes with the pixel mode. So it does not get to be scanned but it is set
intentionally at the same time as the threshold is set. Here () are https://confluence.slac.stanford.edu/display/ppareg/ePixM%3A+gain+modes
some suggested values.

For the charge injection, that is also a new beast for this detector. Unlike the previous detectors, we are not injecting an external signal, but switching an
already charged capacitor. This has been implemented in a way that charge injection occurs for all pixels in column in one go. I talked to Dionisio and
Lorenzo and they will ask Dawood to provide some documentation on how you make charge injection happen for this detector. Also, unlike the previous
detectors where we performed charge injection on a central pixel, with no charge injection on its neighbor, and then cycled through all pixels so they all
receive charge injection, here we will be performing charge injection on a combination of columns simultaneously and stepping through, but Dionisio and
Lorenzo wanted to cycle around how to do this and then get back to you.

See .Charge injection with python using helper functions

From Chris: I think for previous detectors charge injection has run in all modes. The actual settings will be tweaked, but it would be good to do
the same for epixM, and ideally verify that the pixels do change range when the switching threshold is set somewhere in the middle.

From Dawood: I talked to Lorenzo. Yes, the columns need to be reprogrammed everytime. Meaning that you would need to run the
prepareChargeInjection everytime before running a trigger event, even if the columns configuration does not change between the two consecutive
trigger events.

April 2024 Beamtime Requirements
*** critical

will use a new detector for beam time
*** 5kHz epixM

run-trigger and daq-trigger patterns:
5k,5k
5k,120
5k,2.5k

matt provides "divisors-of-5k" script which should still work
*** timing scans

(done?) configuration scan
Looks like cas/epixhr_timing_scan.py should work for the ePixM, too

*** fibers/nodes
have 11 working fiber pairs and 1 broken one. epixhr uses 3 (2 data 1 timing) epixm uses 5 (4 data 1 timing 1 register)

cpo submitted Jira to fix broken fiber and add fix cassettes between 208 and src
need to check that all 11 are working

Chris Ford is tasked with running timing/data fibers in 208/srcf and by default will use cmp034 for the epixM
need detector group help going from mezzanine to hutch

*** does psana handle disabled lanes correctly? currently the disabled lanes get a fixed number put in them (lane-number). this may work with
Mikhail's.
tstx00417 in ~tstopr/data/drp/tst/tstx00417/xtc/ runs 313 and 314 but shape may be incorrect.

(done) run 316 has the data organized as (4, 192, 384). Previously, it was (1, 384, 768).
cable to see acquisition window on the scope?

dawood will check
intensity scans

done by changing the beam so no work required from daq group
pedestals

soft-low
soft-hi
threshold in the middle SA
mikhail will work on "placeholder" infrastructure but there are subtleties that we won't worry about for the beam time

don't necessarily need calibrated data
Need at least rough calibration constants to let AMI work

(lower priority) more precisely define how we handle the gain-switching, if at all?
soft-low (configurable threshold at one extreme)
soft-high (configurable threshold at the other extreme)
configurable threshold in the middle
what are the nominal gains? nominal gain ratio is 4.7

bit 15 is gain mode, bits 0-14 are data. data bits may be trimmed in the future (13 or 12?)
(lower priority) charge-injection

mikhail/ric are putting in placeholder code, but doesn't work: waiting for ASIC/FPGA fix

ConfigDb
The configDb schema for the ePixM consists of and sections. It is set up from the area as follows:user expert lcls2/psdaq/psdaq/configdb

https://confluence.slac.stanford.edu/display/ppareg/ePixM%3A+gain+modes
https://confluence.slac.stanford.edu/display/ppareg/Charge+injection+with+python+using+helper+functions

python epixm320_config_store.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --dir /cds/home/c/cpo/git/epix-hr-m-320k/

The section holds parameters that are laid out similar to the hardware writeable reigisters. Their names are the same as those found in expert
devGui. These parameters contain default settings that are written to the hardware at appropriate times. Many of them were initialized from yaml files
supplied in the project:epix-hr-m-320k

python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config
/ePixHRM320k_75000018efb4ab01_ASIC_u1.yml
python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config
/ePixHRM320k_75000018efb4ab01_ASIC_u2.yml
python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config
/ePixHRM320k_75000018efb4ab01_ASIC_u3.yml
python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config
/ePixHRM320k_75000018efb4ab01_ASIC_u4.yml
python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config
/ePixHRM320k_75000018efb4ab01_PacketRegisters.yml
python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config
/ePixHRM320k_PowerSupply_Enable.yml
python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config/ePixHRM320k_RegisterControl.
yml
python epixhr_config_from_yaml.py --prod --user tstopr --inst tst --alias BEAM --name epixm --segm 0 --id
epixm320_serial1234 --yaml Root:/cds/home/c/cpo/git/epix-hr-m-320k/software/config
/ePixHRM320k_75000018efb4ab01_SspMonGrp_carrier.yml

Note that the PowerSupply_Enable file has recently been trivial and causes ' ', but this could Exception: modify_device: operation failed!
change in the future. The exception is harmless. Some of these yaml files are specific to the hardware instance of the detector. Thus, a given ePixM DB
instance will likely not work well with a different detector instance. Also note that loading the yaml files into the DB overwrites default settings that may
have been previously modified using the ConfigDb editor in Control_GUI.

The section contains several parameters that are used to determine values for parameters written to the hardware. The resulting values override user
values from the section in some cases and are not reflected there. In the case of , for example, values for the expert user.gain_mode CompTH_ePixM
and parameters are taken from the table above (in Precharge_DAC_ePixM Pedestal Scans and Charge Injection) for modes 0, 1 and 2, but the values
stored in the section are used for mode 3.expert

Detector Interface: DAQ-Segments With Multiple Free-Floating ASICs
*** problem: 1 epixM daq-segment has 4 "panels" ("multi-panel segments") that need geometry
*** need to add new idea: "panels" contained in each segment

 (Conclusion mikhail's requirement): if we had a 12-asic epixm detector, then each epixM daq-segment must have "quanta" 4 panels (3 daq-segments
total). Agreed! three .xtc files each with shape (4,192,384) but det.raw.raw() reshapes it to (12,192,384). Mikhail

: segment means daq-segment. WTerminology hat's the terminology for asics in daq-segment? panels, virtual-segments, asics, sub-segments,
vsegment? Mikhail suggests we use "panels" for now.

everything stays the same (1 serial number per segment)
except: 1 segment has 4 panels with geometry that is looked up with seg serial#
does it make it easier to reshape (4,192,384) to (384,768) but has variable geom?
 - doesn't help. difficulty: breaks rule that all panels are identical
could we add a new "segment" idea where we override the daq-segment-numbers? "panels"

processing of partial detector is important (e.g. daq-segments 2,7)

Intermittent ASIC Lanes
A number of the data lanes from the ASICs are intermittent on the device we're testing with (0016778240-0000000000-0000000000-4032267777-
3204448280-0177427457-3053453334). After disabling these lanes, the current detector interface provides images in AMI like the first image below. After
Dawood adjusted various App.SspMonGrp[*].UsrDlyCfg[*] values, more lanes became reliable (second image). This configuration was tested with Run
/DAQ triggers set to 100/100, 5000/100, 5000/5000, 5000/2500, and 4000/2000 Hz.

https://github.com/slaclab/epix-hr-m-320k

As of April 1, 2024, another detector (0016778240-0176075265-0452984854-4021594881-1962934296-0177446913-0402653206) is being readied for an
upcoming beam test. With the delays provided by the detector-specific .yml file and the automatic bad lane disablment done by the Root class on
Configure, the third and (later) fourth images above were obtained.

Running the DAQ
The beam-test ePixM is currently in the FEE test stand. To run it, log in to drp-neh-ctl002. You can use your own account or detopr (if you can make it
work), but avoid rixopr for now. Change directory to where you want to work and execute the following:

ln -s ~rixopr/git/lcl2_040324/setup_env.sh
cp ~rixopr/git/lcl2_040324/psdaq/psdaq/cnf/epixM.cnf .

You can modify the copy as you see fit. Prior to running the DAQ, source the setup_env file. Run the DAQ with . Se.cnf procmgr start epixM.cnf
e the section of the EpixHR page for setting up the trigger. There are a set of scan scripts available which can be run as:Beam Test Trigger Setup

python ~rixopr/git/lcls2_040324/psdaq/psdaq/cas/epixhr_timing_scan.py -p 3 -C drp-neh-ctl002 --hutch tst --
config BEAM --detname epixm_0 --scantype timing --events 2000 --record 1
python ~rixopr/git/lcls2_040324/psdaq/psdaq/cas/epixm_pedestal_scan.py -p 3 -C drp-neh-ctl002 --hutch tst --
config BEAM --detname epixm_0 --scantype pedestal --events 2000 --record 1
python ~rixopr/git/lcls2_040324/psdaq/psdaq/cas/epixm_chargeinj_scan.py -p 3 -C drp-neh-ctl002 --hutch tst --
config BEAM --detname epixm_0 --scantype chargeinj --events 2000 --record 1

Move the DAQ in the or state prior to executing one of them.ALLOCATED CONNECTED

The location where the data is recorded is governed by the file. With as originally provided, this is the Lustre filesystem at .cnf epixM.cnf /drpneh
. This path is accessible only from drp-neh-cmp0XX nodes. The full path of the data files can be found in the log files./data

https://confluence.slac.stanford.edu/display/PSDMInternal/EpixHR#EpixHR-BeamTestTriggerSetup

Details

Run the DAQ as follows:

ssh drp-neh-ctl002
cd scripts
. ./setup_env.sh
procmgr start epixM.cnf

A bunch of windows will come up after the command is given. Usually the first thing to do is to click the button in the procmgr start Select Partition
area of the GUI. It may take a few moments before the window pops up (called), depending on previous DAQ Control Select partition Rollcall
history and the state of the system. Once the window appears, select the detectors you want to include in your run. The detectors will by default be
assigned to the readout group () for the platform on which you launched the DAQ (nominally 2). Under some circumstances, this must be changed, grp
but can be left alone for now. Optionally select if you plan to use AMI. It should look like the first screen-shot below:ami-meb0

From this you can see that the ePixM detector is named and runs on drp-neh-cmp003 (in the FEE test-stand). The timing DRP is named epixm_0 timing
 and runs on drp-neh-cmp002. These names are set up in the file. Note that changing them also requires corresponding changes to the _1 .cnf

configuration database (configDb). To access and modify an entry, click on the button in the section of the Control GUI. Leave Edit Configuration
the at and use the pull-down to choose a detector. You'll see the two detector names currently in this DAQ instance in the configDb Type BEAM Select
list, similar to the second screen-shot above.

You may find you need to modify the and/or database instances to adjust various parameters. As an example, below is a screen-epixm_0 timing_1
shot of the configDb instance, highlighting the parameter. You might want to change its value if it conflicts with another epixm_0 run_trigger_group
detector's or DAQ's usage.

In the section, parameters can be found with which to initialize the ePixM device's registers. The configDb has been initialized with data from the .expert
yml files supplied with the epix-hr-m-320k project. It is organized in a way similar to what one sees with the device's devGui.

In the configDb section, one can find the parameters for setting up the trigger. Take care to modify only the groups appearing in the timing_1 Select
 pop-up (above) to avoid interfering with other DAQ instances. As an example, the second screen-shot above shows that group 2 has been partition

set up to trigger at a fixed rate if 10 Hz, and group3 has been set up to trigger on eventcode 261.

Sometimes a group is used implicitly, as with the ePixM's (and ePixHR's) Run Trigger group. Its parameters are not governed by the configDb instance,
but instead are manipulated directly using the GUI and a script. The section of the EpixHR page describes one such groupca Beam Test Trigger Setup
script and how to run it. With , one then enters values on the appropriate group tab to set up rates, event codes, etc., as shown in the first screen-groupca
shot below:

Note that which tabs displays is governed by the launch line for it in the .cnf file. On the tab of the GUI (second groupca Groups/EventCodes xpmpva
screen-shot above), one can see what event codes already exist and what their parameters are. Once the settings are dialed in, switch to groupca's
Events tab to verify that the Run Trigger's group is running (L0InpRate not equal to 0). If it running, click the checkbox to start it. Unfortunately, isn't Run
this will also start the other group (DAQ Trigger), which may confuse the DAQ. To recover, either restart the DAQ with:

procmgr restart epixM.cnf

or move the in the Control GUI to RESET. Then the detector selection again.Target State Apply

The Control GUI is built around a . The configDb values are applied to the hardware when the DAQ goes through the Configure Finite State Machine
transition. Remember to re-Configure (unwind the state machine to or below) when you make a change.CONNECTED

Once the parameters have been set up as desired, a run can be taken. Decide whether you want to run with or without recording and click the Record
button on the Control GUI, as appropriate (must be done when the state machine is in a state lower than). Then move the to BeginRun Target State R

 to start the run. When done, move the to (or lower, e.g.,) to stop the run. UNNING Target State PAUSED CONFIGURED

Alternatively, there are scripts with which to run a scan. Available scans are timing, pedestal and charge injection. These can be run by first putting the
DAQ in the state (followed by ing the detectors chosen in the pop-up) and running one of the ALLOCATED procmgr start Apply Select partition
following scripts:

python ~rixopr/git/lcls2_040324/psdaq/psdaq/cas/epixhr_timing_scan.py -p 3 -C drp-neh-ctl002 --hutch tst --
config BEAM --detname epixm_0 --scantype timing --events 2000 --record 1
python ~rixopr/git/lcls2_040324/psdaq/psdaq/cas/epixm_pedestal_scan.py -p 3 -C drp-neh-ctl002 --hutch tst --
config BEAM --detname epixm_0 --scantype pedestal --events 2000 --record 1
python ~rixopr/git/lcls2_040324/psdaq/psdaq/cas/epixm_chargeinj_scan.py -p 3 -C drp-neh-ctl002 --hutch tst --
config BEAM --detname epixm_0 --scantype chargeinj --events 2000 --record 1

See the option of these scripts for usage information. Note that the timing scan can be done with the ePixHR script while the pedestal and charge -h
injection scripts are specific to the ePixM.

When you're done with the DAQ, it can be closed down with:

procmgr stop epixM.cnf

https://confluence.slac.stanford.edu/display/PSDMInternal/EpixHR#EpixHR-BeamTestTriggerSetup
https://confluence.slac.stanford.edu/display/PSDMInternal/Finite+State+Machine

	EpixM

