
1.
2.

MPS
MPS Config is a client library for interacting with the Config/Logic DBs as well as relevant MPS PVs. Written in Java.

 is a desktop application that displays the state of the MPS. Written in Java.MPS GUI
 is a Unix daemon that saves MPS messages to OracleMPS History Server

 page for MPS Logic editor and MPS Config editor.MPS Editors
 is a prototype that can correlate MPS History data with the data from the Channel Archiver.MPS Stats

#General Remarks
#Glossary

General Remarks
MPS GUI and are built on top of the module MPS History Server MPS Config

All SQL queries are stored in .properties files in corresponding packages
(Almost) all constants/properties for each MPS "module" are located in the class edu.stanford.slac.module.ModuleProperties

Glossary

Fault

aka (binary) , signalinput
The basic event in the MPS

Belongs to an MPS device; usually a PV
Has two states: OK (true or 1) and Faulted (false or 0)

Current fault states is what drives the MPS
Stored in the Config DB
4 types: EPICS, LinkNode, LinkNodeChannel, LinkProcessor

Classes in edu.stanford.slac.mps.faultMPS Config
Fault numbers are keys; fault names may be changed by MPS engineers

Macro

https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+Config
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+GUI
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+History+Server
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+Editors
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+Stats
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+GUI
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+History+Server
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+Config
https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+Config

aka logic, truth table
Defines 2-4 s for 1 or 2 faults#MacroState

The order of faults matters (there is a column "position" in the DB schema)
May need support for more than 2 faults in the future (major redesign needed!)

Can be bypassed (set) to a for a period of time#MacroState
Bypassed fault numbers (ids) are stored in IOC:BSY0:MP01:BYPASS_LIST.VALA
Corresponding (absolute) end times are stored in IOC:BSY0:MP01:BYPASS_LIST.VALB (using EPICS epoch)
Operators want to know when bypasses expire

Macro numbers are keys; macro names may be changed by MPS engineers
Stored in the Logic DB

Ignore Condition

aka ignoring macro (overload- sigh!), ignore logic
Sort-of "meta"-macros that can ignore other macros

Useful, for instance, when the fault hardware misbehaves
Can be set active or inactive (by MPS engineers, not operators)
If active, operators want to know the minimum rate the MPS would allow, if the condition became inactive
Note: Some macros are always evaluated

Stored in the Logic DB

MacroState

aka (just) state
Defines the maximum allowed beam rates for a combination of fault states

Rate names are hard-coded in edu.stanford.slac.mps.jdbc.logic.Rate
Characterized by a state number

A negative state number has a predefined meaning (see method getMacroState() in the class edu.stanford.slac.mps.jdbc.logic.LogicDB
in)MPS Config
A non-negative state number limits beam rates

The binary representation of the (non-negative) state number reflects the states of the corresponding faults; example for 2 faults: A (position=0)
and B (position=1):

State
Number

Binary
Representation

B* A* Rate Limits at 4
Locations

0 00 0 0 0Hz 10Hz 0Hz 0Hz

1 01 0 1 0Hz 10Hz 120Hz 120Hz

2 10 1 0 120Hz 10Hz 0Hz 0Hz

3 11 1 1 120Hz 10Hz 120Hz 120Hz

Note: In A and B columns, you may also see T (for True) and F (for False)
Current state numbers of every macro are stored in IOC:BSY0:MP01:TTBLST.VALA

https://confluence.slac.stanford.edu/display/ACCSOFT/MPS+Config

Stored in the Logic DB

	MPS

