EED git workflow

Core Principles

® main branch is sacred: The mai n branch exclusively holds code that is production-ready and suitable for immediate deployment to pre-
production.

® Feature Isolation: Development of new features or changes takes place in isolated feature branches.

* Pull Requests for Integration: Merging features into mai n is strictly controlled through pull requests (PRs), enforcing code review and quality
checks.

Branching Model

1. main: The primary branch representing the latest pre-production-ready code. All merges into mai n trigger pre-production deployments.

2. develop: Serves as the integration branch for completed features. Code in devel op should be stable but may not be fully production-ready.

3. feature/*: Short-lived branches created off devel op for developing individual features or fixes. Names follow a convention like f eat ur e/ new-
wi dget .

4. fix/*: Short-lived branches created off devel op for fixing bug or issues.

Workflow

1. Start a Feature:

® Create a new branch from the latest main or whatever is your starting point:

git checkout -b feature/ny-awesone-change

2. Develop the Feature:

® Make code changes and commit regularly to your feature branch.
® Push your branch to the remote repository to share and back up code.
3. Create a Pull Request:

® Once your feature is complete and tested locally:
© Push your feature branch to the remote repository.
O Create a PR targeting the mai n branch.
© Describe your changes and the rationale behind them.
4. Code Review & Testing:

® Collaborators review and suggest improvements.

® Address feedback by making additional commits to your feature branch.

® automated tests run creating temporary testing environment based on your feature branch for more thorough review.
5. Merge into main:

® Once the PR is approved, merge the feature branch into mai n.
® After the PR from br anch to mai n is approved and merged, a deployment pipeline is automatically triggered to deploy the updated code
to EED pre-production environment.

Additional Considerations

® Hotfixes: For critical production issues, create branches directly from mai n (e.g., hot fi x/ cri ti cal - bug). Merge hotfixes simultaneously back
into both mai n (for immediate fix) and devel op (to incorporate into ongoing development).

®* Release Branches: For managing formal releases to production, you may introduce release branches forked from devel op to harden features
and prepare for production deployment.

® Versioning: Adopt a versioning scheme (e.g., Semantic Versioning) to track pre-production releases.

Tooling

® Git clients: Support pull requests and efficient branch management (e.g., GitKraken, command-line Git).
® CI/CD Pipelines: Implement automated testing and deployment to your pre-production environment, triggered by merges into nai n.

Advantages
® Clean release history: mai n maintains a well-defined history of deployable code.

® Enforced review: Changes undergo review before reaching pre-production.
® Parallel development: Multiple features can be developed in isolation.



Develop a NodeJS Backend

Develop a React Ul frontend

EED git workflow

CI/CD implementation

How to deploy webapp on kubernetes


https://confluence.slac.stanford.edu/display/EEDWAD/Develop+a+NodeJS+Backend
https://confluence.slac.stanford.edu/display/EEDWAD/Develop+a+React+UI+frontend
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=428803731
https://confluence.slac.stanford.edu/display/EEDWAD/How+to+deploy+webapp+on+kubernetes

	EED git workflow

