
1.
2.
3.

4.

1.

2.

3.

4.

5.

EED git workflow

Core Principles

main branch is sacred: The main branch exclusively holds code that is production-ready and suitable for immediate deployment to pre-
production.
Feature Isolation: Development of new features or changes takes place in isolated feature branches.
Pull Requests for Integration: Merging features into main is strictly controlled through pull requests (PRs), enforcing code review and quality
checks.

Branching Model

main: The primary branch representing the latest pre-production-ready code. All merges into main trigger pre-production deployments.
develop: Serves as the integration branch for completed features. Code in develop should be stable but may not be fully production-ready.
feature/*: Short-lived branches created off develop for developing individual features or fixes. Names follow a convention like feature/new-
widget.

: Short-lived branches created off for fixing bug or issues.fix/* develop

Workflow

Start a Feature:

Create a new branch from the latest main or whatever is your starting point:

git checkout -b feature/my-awesome-change

Develop the Feature:

Make code changes and commit regularly to your feature branch.
Push your branch to the remote repository to share and back up code.

Create a Pull Request:

Once your feature is complete and tested locally:
Push your feature branch to the remote repository.
Create a PR targeting the main branch.
Describe your changes and the rationale behind them.

Code Review & Testing:

Collaborators review and suggest improvements.
Address feedback by making additional commits to your feature branch.
automated tests run creating temporary testing environment based on your feature branch for more thorough review.

Merge into main:

Once the PR is approved, merge the feature branch into main.
After the PR from branch to main is approved and merged, a deployment pipeline is automatically triggered to deploy the updated code
to EED pre-production environment.

Additional Considerations

Hotfixes: For critical production issues, create branches directly from main (e.g., hotfix/critical-bug). Merge hotfixes simultaneously back
into both main (for immediate fix) and develop (to incorporate into ongoing development).
Release Branches: For managing formal releases to production, you may introduce release branches forked from develop to harden features
and prepare for production deployment.
Versioning: Adopt a versioning scheme (e.g., Semantic Versioning) to track pre-production releases.

Tooling

Git clients: Support pull requests and efficient branch management (e.g., GitKraken, command-line Git).
CI/CD Pipelines: Implement automated testing and deployment to your pre-production environment, triggered by merges into main.

Advantages

Clean release history: main maintains a well-defined history of deployable code.
Enforced review: Changes undergo review before reaching pre-production.
Parallel development: Multiple features can be developed in isolation.

Develop a NodeJS Backend
Develop a React UI frontend
EED git workflow
CI/CD implementation
How to deploy webapp on kubernetes

https://confluence.slac.stanford.edu/display/EEDWAD/Develop+a+NodeJS+Backend
https://confluence.slac.stanford.edu/display/EEDWAD/Develop+a+React+UI+frontend
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=428803731
https://confluence.slac.stanford.edu/display/EEDWAD/How+to+deploy+webapp+on+kubernetes

	EED git workflow

