
How to deploy webapp on kubernetes
Deploying a web application on Kubernetes(K8s) involves a series of steps that ensure your application is containerized, orchestrated, and managed 
efficiently. Below the key points for create and deploy a web application on k8s.

Create container image

K8s is a and orchestrator that works managing container image.  So as first step a your application need to be containerized, Docker is the most common 
tool for this, but other tools can be used, like  or other open source alternatives. Below is a simple python application and an example Dockrifle Podman
that permit to create the container image:

Make sure you have  and  in the same directory as your Dockerfile. Here's a simple  example for a Flask application:app.py requirements.txt app.py

Python Example

import os
from flask import Flask
app = Flask(__name__)

# Use os.environ.get() to read the environment variable 'NAME'. 
# Provide a default value in case 'NAME' is not set.
name = os.environ.get('NAME', 'World')

@app.route('/')
def hello():
    # Use the 'name' variable in your application's response
    return f"Hello {name}!"

if __name__ == '__main__':
    # Run the app on all available interfaces on port 80
    app.run(host='0.0.0.0', port=80)

And your  should at least contain Flask, like so:requirements.txt

Flask

this below is the docker file used for create a container version of the test application

Dockerfile Example

# Use an official Python runtime as a parent image
FROM python:3.9-slim

# Set the working directory in the container
WORKDIR /usr/src/app

# Copy the current directory contents into the container at /usr/src/app
COPY . .

# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt

# Make port 80 available to the world outside this container
EXPOSE 80

# Define environment variable
ENV NAME World

# Run app.py when the container launches
CMD ["python", "app.py"]

Here's a brief explanation of each command in the Dockerfile:

https://podman.io/


: This line sets the base image for the Docker image, using a slim version of the official Python 3.9 image.FROM python:3.9-slim
: This line sets the working directory in the Docker image. Any relative file path will be set from this location.WORKDIR /usr/src/app

: This command copies all files in the current directory on the host machine into the working directory in the Docker image.COPY . .
: This command installs the Python dependencies listed in the RUN pip install --no-cache-dir -r requirements.txt requirement

 file.s.txt
: This line informs Docker that the application listens on port 80. You might need to adjust this depending on the port your Flask app EXPOSE 80

is set to listen on.
: This line sets an example environment variable that could be used by the application.ENV NAME World

: This is the command that runs when the container starts up. It starts your Flask application.CMD ["python", "app.py"]

You can then build and run your Docker image with:

docker build -t your-application-name:tag .
docker run -p 4000:80 your-application-name:tag

this is the link to the test application: app-test.zip

The application now need to pushed to a docker registry (Docker, Github, etc...)

docker tag your-application-name:tag registry-url/your-application-name:tag
docker push registry-url/your-application-name:tag

Set Up Kubernetes Environment

Usually one of the most used k8s test environment can be built using , or other open source alternatives.Minikube

Create k8s object

To deploy the created container on k8s we need to create the following k8s resources:

Deployment: resource that Defines how your application runs and scales. It references the Docker image and defines the desired state.
Service: exposes your application to the internet or internal users. Types include ClusterIP, NodePort, and LoadBalancer.

Deployment Resource (deploy.yaml)

apiVersion: apps/v1
kind: Deployment
metadata:
  name: your-application-deployment
spec:
  replicas: 3
  selector:
    matchLabels:
      app: your-application
  template:
    metadata:
      labels:
        app: your-application
    spec:
      containers:
      - name: your-application
        image: registry-url/your-application-name:tag
        ports:
        - containerPort: 80

This Kubernetes resource is a Deployment configuration, which provides declarative updates for Pods and ReplicaSets. Let's break down its components:

apiVersion: apps/v1: Specifies the API version for the Deployment resource.  indicates that it is a stable version of the deployment apps/v1
API, suitable for production use.
kind: Deployment: Defines the kind of Kubernetes resource being configured. In this case, it's a Deployment, which manages the creation, 
scaling, and updating of Pods based on the specified template.
metadata:

name: your-application-deployment: The name of the Deployment. This name is used to identify the Deployment within the 
Kubernetes cluster.

spec (specification):

replicas: 3: Specifies the desired number of replica Pods the Deployment should manage. In this case, it's set to 3, meaning the 
Deployment will try to ensure that there are always three Pods running.

https://confluence.slac.stanford.edu/download/attachments/428146966/app-test.zip?version=1&modificationDate=1707157983647&api=v2
https://minikube.sigs.k8s.io/docs/start/


selector:

matchLabels:
app: your-application: Specifies how the Deployment identifies which Pods to manage. The selector matches 
the labels assigned to Pods. In this case, the Deployment manages Pods that have the label  with the value app your-

.application
template:

metadata:
labels:

app: your-application: Labels applied to Pods created from this template. These labels are used by 
the Deployment selector to identify the Pods it manages.

spec:
containers: Defines the container specifications for Pods created by this Deployment.

name: your-application: The name of the container within the Pod. This name is used to identify the 
container within the Pod and can be used for logging, debugging, and other operations.
image: registry-url/your-application-name:tag: Specifies the Docker image to use for the 
container. This should be the path to the image in a Docker registry, including the tag to specify the version of 
the image to use.
ports:

containerPort: 80: Specifies the port that the container exposes. In this case, it's set to port 80, 
indicating that the application within the container listens on port 80.

this Deployment configuration named  is designed to ensure that three replicas of a Pod are running at all times. Each your-application-deployment
Pod runs a container based on the specified Docker image  and exposes port 80. The Deployment registry-url/your-application-name:tag
manages Pods that are labeled with , ensuring that the desired state of having three replicas is maintained, handling scaling app: your-application
and updates as defined by the Deployment configuration.

Service resource (service.yaml)

apiVersion: v1
kind: Service
metadata:
  name: your-application-service
spec:
  type: LoadBalancer
  ports:
  - port: 80
    targetPort: 80
  selector:
    app: your-application

This Kubernetes Service resource is a configuration that defines how to expose an application running on a set of Pods as a network service. Let's break 
down its components:

apiVersion: v1: Specifies the API version for the Service resource.  is the core group version and indicates a stable version of the resource v1
definition.
kind: Service: Defines the kind of Kubernetes resource being configured. In this case, it's a Service, which is used to expose applications 
running on Pods as network services.
metadata:

name: your-application-service: The name of the Service resource. This name is how the Service will be identified within the 
Kubernetes cluster.

spec (specification):

type: LoadBalancer: Specifies the type of Service. A LoadBalancer Service makes your application accessible from the internet by 
provisioning a cloud provider's load balancer to route external traffic to the Service. This type is commonly used when running 
Kubernetes in cloud environments that offer load balancer services.
ports: Defines the port settings for the Service.

port: 80: The port on which the Service is exposed. This is the port that will be used by external clients to access the Service.
targetPort: 80: Specifies the port on the Pods to which the traffic will be forwarded. In this case, traffic received on port 80 
of the Service will be forwarded to port 80 on the Pods selected by the Service.

selector:

app: your-application: Specifies how the Service identifies which Pods to target for routing traffic. The selector matches 
the labels assigned to Pods. In this case, the Service routes traffic to Pods that have the label  with the value app your-

.application

this Service resource configuration creates a LoadBalancer type Service named . It exposes the application on port 80 to your-application-service
the internet through a load balancer provided by the cloud platform. The Service forwards traffic arriving at this port to port 80 on Pods labeled with app: y

. This setup is commonly used for applications that need to be accessible from outside the Kubernetes cluster, providing an easy way our-application
to expose services to the internet with minimal configuration.



Ingress resource (ingress.yaml)

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: your-application-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /$2
    nginx.ingress.kubernetes.io/enable-cors: "true"
  labels:
    name: your-application-ingress
spec:
  rules:
  - host: "hostname.slac.stanford.edu"
    http:
      paths:
      - pathType: Prefix
        path: /uri/prefix(/|$)(.*)
        backend:
          service:
            name: elog-plus-backend-service
            port: 
              number: 80

apiVersion: networking.k8s.io/v1: Specifies the API version for the Ingress resource.  indicates that this is a networking.k8s.io/v1
stable version of the Ingress API.
kind: Ingress: Defines the kind of Kubernetes resource being configured. In this case, it's an Ingress, which is used for managing access to 
services within the cluster from the outside.
metadata:

name: your-application-ingress: The name of the Ingress resource.
annotations:

: /$2nginx.ingress.kubernetes.io/rewrite-target : This annotation for NGINX Ingress controller specifies the 
rewrite path target. When a request matches the given path pattern, the path is rewritten before forwarding the request to the 
backend service.  means that the captured group  from the path is appended to the , effectively transforming the /$2 (.*) /
original request to the captured suffix.

: "true"nginx.ingress.kubernetes.io/enable-cors : Enables Cross-Origin Resource Sharing (CORS) for requests 
coming to this Ingress, allowing resources to be requested from another domain.

labels:
name: your-application-ingress: A label to identify this Ingress resource. Labels can be used for organizing and 
selecting subsets of objects.

spec:

rules: Defines the rules for routing traffic.
host: " "hostname.slac.stanford.edu : Specifies the host on which the rule applies. This means that the Ingress will 
apply to requests made to .hostname.slac.stanford.edu
http:

paths:
pathType: Prefix: Indicates that the path specified is to be interpreted as a prefix. This means any path 
that has this prefix will match.
path: /uri/prefix(/|$)(.*): Specifies the URI path that, when matched, will route requests to the 
specified backend. The regex  captures everything after , allowing for flexible path (/|$)(.*) /uri/prefix
matching.
backend:

service:
name: elog-plus-backend-service: The name of the backend service to which 
traffic should be routed when the path matches.
port:

number: 80: The port number on the backend service to which the traffic should 
be sent.

This Ingress resource configuration effectively routes HTTP traffic coming to  and any subpath (hostname.slac.stanford.edu/uri/prefix /uri
) to the  on port 80. The path rewrite and CORS settings further customize how the incoming /prefix/anything-here elog-plus-backend-service

requests are handled and forwarded to the backend service.

Use other Kubernetes resources as needed (ConfigMaps, Secrets, Volumes) to manage configurations, sensitive information, and persistent 
data.

http://networking.k8s.io/v1
http://networking.k8s.io/v1
http://nginx.ingress.kubernetes.io/rewrite-target
http://nginx.ingress.kubernetes.io/enable-cors
http://hostname.slac.stanford.edu
http://hostname.slac.stanford.edu
http://hostname.slac.stanford.edu/uri/prefix


1.  

2.  

3.  

The relationship between Deployment, Service, and Ingress resources in Kubernetes is a fundamental aspect of how applications are deployed, exposed, 
and accessed within a Kubernetes cluster. Each of these resources serves a specific role in the application deployment and access workflow. Here’s how 
they interrelate:

Summary of the relationship between the above describe resources

Deployment

Role: Manages the deployment and scaling of a set of Pods and ensures that the specified number of Pods are running and up-to-date. It 
abstracts the management of ReplicaSets and Pods, handling updates and rollbacks.
Relationship: Deployments create and manage Pods based on a defined template. These Pods contain the actual running instances of your 
application containers.

Service

Role: Provides a stable endpoint for accessing the Pods managed by a Deployment. Services abstract the Pod IP addresses, making the 
backend Pods accessible without needing to know the specific Pods. Services can be of different types, such as ClusterIP (default, internal 
communication), NodePort (exposes the Service on each Node’s IP at a static port), and LoadBalancer (exposes the Service externally using a 
cloud provider’s load balancer).
Relationship: A Service selects Pods based on labels (specified in the Deployment's Pod template) and provides a single access point to access 
those Pods. This means that the Service acts as a load balancer, distributing network traffic to the Pods.

Ingress

Role: Manages external access to the services within the cluster, typically HTTP/HTTPS traffic. Ingress can provide load balancing, SSL 
termination, and name-based virtual hosting. It acts as an entry point for your cluster's services, allowing you to define accessible URLs, load 
balancing policies, and more.
Relationship: Ingress is used to route external requests to the Services within the cluster. The Ingress resource defines rules for routing traffic to 
different Services based on the request host or path. It allows more complex traffic routing than a Service of type LoadBalancer, enabling you to 
expose multiple services under a single IP address.

Workflow Summary

Deployment: You define a Deployment to manage your application’s Pods. The Deployment ensures the desired number of Pods are always 
running and manages updates to your application.
Service: To expose the Pods managed by the Deployment internally within the cluster or externally, you define a Service. The Service provides a 
stable endpoint (DNS name or IP address) that routes traffic to the Pods.
Ingress: For more advanced routing needs (e.g., path-based routing, SSL termination, domain name-based access), you define an Ingress. The 
Ingress controls access to the Services from outside the Kubernetes cluster, routing external requests to the appropriate Services based on the 
defined rules.

Deploy Your Application

When the resources are ready and the k8s is accessible with the kubectl CLI, the resources can be created in this way.

kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
kubectl apply -f ingress.yaml

How to deploy webapp on kubernetes


	How to deploy webapp on kubernetes

