BPM AMC Card Testing

BPM Testing

Color Codes:

root@shm-b084-sp01 (Green)

Icls-dev3 (Blue)

laci@cpu-b34-bp01 (Orange)

Board Dependent Information (Magenta)

1. Boot/Reboot board in shelf

- ssh root@shm-b084-sp01
 - Password:
 - Important commands to know
 - o clia deactivate board <slot#>
 - $^{\rm O}$ clia activate board <slot#>

2. Program the FRU

- Program the AMC FRU's EEPROM
- · Source the setup script
 - o For bash source /afs/slac/g/reseng/IPMC/env.sh
 - For C-Shell source /afs/slac/g/reseng/IPMC/env.csh
- If the bin is made skip down to the next bullet point (This should be done)
 - Create a binary (.BIN) file from the INF file (should be done already)
 - python /afs/slac/g/cci/package/pps-tools/frucom/fruc.py <file>.inf <file>.bin
 - For 230-60 MHz boards
 - 379-396-03-c04-230-60.inf
 - pc_379_396_03_c04_230_60.bin
 - For 300-30 and 300-60 MHz
 - pc_379_396_03_c04_300_60.inf
 - pc_379_396_03_c04.bin
- cba_amc_init --file /afs/slac/g/lcls/users/BPM/LCLS_II/BPM/Fru/<bin> --serial --tag <tag> <shm>/<slot>/<bay>
 - The tag is the XX in C04-XX
 - shm: shm-b084-sp01
 - slot: 2
 - bay: 2
- To read the EEPROM back ° cba_amc_init --dump <shm>/<slot>/<bay>

3. Verify the board voltages

- · All test points have common ground
- 12VS should not have voltage

4. RF testing using E4438 generator

- Connect low noise RF generator to inputs:
 - LCLS II
 - 300-30 MHz @ -20dBm
 - 300-60 MHz @ -20dBm
 - 230-60 MHz @ -23dBm
 - FACET II
 - 300 MHZ-30 @ -8dBm
 - Generate test files
 - ssh laci@cpu-b34-bp01
 - cd /afs/slac/g/lcls/users/BPM/LCLS_II/BPM/software/lcls2-py-scripts/
 - ./launch.sh striplineTakeData.py -A0 -B0 -Y stripline_yaml/*_project.yaml/000TopLevel.yaml -D stripline_yaml/*_project.yaml/config/defaults_ss.yaml -b1 -n1 -d /data/cpu-b34-bp01/bpm_data/
 - Log onto a machine that you can get a Matlab license for
 - ssh <username>@rdsrv223
 - Copy test files to the proper directory
 - cd /afs/slac/g/lcls/users/BPM/LCLS_II/Data
 - scp -r laci@cpu-b34-bp01:/data/cpu-b34-bp01/bpm_data/<filename>/ .
 - Open data in Matlab
 - Source the following
 - ° bash
 - o source /afs/slac/g/lcls/epics/setup/epicsenv-7.0.3.1-1.0.bash

- export MLM_LICENSE_FILE=27010@license701,27010@license702,27010@license703 --> new
- o source /afs/slac/g/controls/development/package/matlab/setup
- /matlab_2017b_setup_local.bash
- cd /afs/slac/g/lcls/users/BPM/LCLS_II/matlab
 - ° matlab &
 - Run SNR*b84*Gbe.m
 - Be sure to close Matlab when done
 - $^{\circ}~$ Change line 19 to have the right filename
 - Change line 28 to ADC.index=4
 - 4==chan0
 - 5==chan1
 - 6==chan2
 - 7==chan3
 - Look for and record the values:
 - sig_power > 1
 SNR > 60
- Repeat for indices (5,6,7)

5. Attenuation Sweep

- ssh laci@cpu-b34-bp01
- cd /afs/slac/g/lcls/users/BPM/LCLS_II/BPM/software/lcls2-py-scripts/

◦ Is the ATTN variance <1dB

- Record the point when the variance is off by 1dB for each channel
- What is the 1dB compression?

On rdsrv223 or lcls-dev3

o cd /afs/slac/g/lcls/users/BPM/LCLS_II/Data o scp -r laci@cpu-b34-bp01:/data/cpu-b34-bp01/bpm_data/attn_sweep_SN<SerialNumber>.txt <space>

6. Fake Beam testing

Configure 4131A pulse generator

- Ext trigger from the crate
- Width 700ps
- Depending on the board
- For 300 Mhz
 - 30MHz Amp 4.25 V (Use High & Low to set this value is easier)
 - 60 MHz Amp 1.8 V
 - Attenuators (Matlab Script will do this automatically)
 - LCLS II
 - Att 1 = 4
 - Att 2 =8
 - FACET II (Uses 4.25V)

 Att 1 = 6
 - Att 1 = 6
 - For 230 Mhz
 - Amp 1.50 V
 - Attenuators (Matlab script will do this automatically)
 - Att 1 = 4
 - Att 2 = 8

Run test software

- o siocRestart sioc-b084-bp02
 - Environment issues source these commands
 - source /afs/slac/g/lcls/tools/script/ENVS.bash
 - source /afs/slac/g/lcls/epics/setup/epicsenv-cur.bash
- ° iocConsole sioc-b084-bp02
 - quitting iocConsole ctrl-a then ctrl-d
 - To shut down press enter to see a new line
 - type exit() (open and close parentheses)
 - Troubleshooting issues
 - From the cpu ping the carrier slot
 - ° ssh laci@cpu-b34-bp01
 - ^o ping 10.0.1.102
 - Open EPICS and TPG windows
 - In a Bash shell
 - ~disco/scripts/bash/bpm_launcher.sh

Script above does the following

- ° edm -x bpm_b084_dev &
 Source an EPICS 3.15 script
 - .<space> /afs/slac/g/lcls/epics/setup/go_epics_3.15.5-1.0.bash
 Select BPMS:B084:200
 - cd /afs/slac/g/lcls/epics/iocTop/Tpg/Tpg-git/tpgApp/srcDisplay/
 - ./tpg2_screen &
 - ° In bsa_resolution.m on line 7 sets the edef you can open the corresponding edef to see the NtoAcq count up.

Configure/Verify LCLS-II or LCLS-I timing

- ° Verify the trigger settings in both SIOC:B084:BP02 Triggers screen and the TPR expert screen, see attached pictures
 - SIOC:B084:BP02 Triggers screen
 - Verify the TDES for DIAG and BSA match at 150ns Verify the TDES for calibration at 1000000

10.10	S] SICCIDI	14:0202 Tilgger	ni i		
H Trigger 1			1111	441	-4
8,					
115		T13 0004 0P	a e		
A DATE			- '		
	··-	40% (- 16 16		
10.00	700	2,6,167	1.1	tati ora	
	CAN SLOP	11.1			
0.5195					
10 A 10 A	559¥ .	1.000	<i>~~</i>	٥ <u>२</u>	
DE VERDE LADOR 41	1	1 🗖 🗌	D.M.s.	1	
DPN 550001300 CV hhada	1	1000	CAR.	:	
01/12/02/02/12/07/081	>	×	b .		

TPR expert screen

- Verify that the event counts for the enabled channels increments
 Verify the BSA/MPS Acquisition Trigger is enabled and the corresponding channel is enabled ° 1 MHz is fine here

	X TPR:B084:BP02:0 Tri	iggers						
TPR:B084:BP02:0 Configuration							Exit	
System Information	Channels							
	Rate Mode	Fixed Rate	AC Rate	Rate	Destination	Chan Enable	Event Counts	
Link Link Up TPR TPR-B084:BP02:0	0 Fixed 🛄	10Hz 🗆	60Hz 💷	10.0	Don't care 💷	Enabled	934872	
Version No Error IOC	1 Fixed 💷	10Hz 🗆	60Hz 💷	10.0	Don't care 💷	Enabled	934872	
Mode LCLS2 CPU	2 Fixed 🛄	1MHz 🗆	60Hz 💷	0.0	Inclusive 💷	Disabled	0	
Uptime 430900 Crate	3 Fixed 🗐	1 MHz	60Hz 💷	0.0	Inclusive 💷	Disabled	0	
Crate Slot	4 Fixed	1MHz 🗆	60Hz 💷	0.0	Inclusive 🗆	Disabled	0	
	5 Fixed 🔟	1MHz 🗆	60Hz 💷	0.0	Inclusive 🗆	Disabled	0	
Acquisition Triggers	6 Fixed	1MHz 🗆	60Hz 💷	0.0	Inclusive 🗉	Disabled	0	
Triager Device (Channel Polarity	7 Fixed	1MHz 🗆	60Hz 💷	0.0	Inclusive 💷	Disabled	0	
(DD Not Change) (Second be visional)	8 Fixed 🔟	1 MHz 💷	60Hz 💷	0.0	Inclusive 🗉	Disabled	0	
1 BPMS:B004:200 Beam Channel 00 Rising Edge Convention is:	9 Fixed	1MHz 🗆	60Hz 💷	0.0	Inclusive 💷	Disabled	0	
Channel 0 Slow Readback Channel 1 Stripline Celibration	10 Fixed 🔟	1MHz 🗆	60Hz 💷	0.0	Inclusive 🗆	Disabled	0	
3 BPMS:B084:200 Cal Channel 01 Rising Edge Channel 2 BSA/MPS	11 Fixed 🔟	1MHz 🗆	60Hz 💷	930721.0	Don't care 🔲	Enabled	-1326895800	
Upstream Z BPM uses AMC 1 Downstream Z BPM uses AMC 0	12 Fixed	1MHz 🗆	60Hz 💷	0.0	Inclusive 💷	Disabled	0	
5 BPMS:B084:200 BSA Channel 02 Rising Edge	13 Fixed 💷	1MHz 🗆	60Hz 💷	0.0	Inclusive 💷	Disabled	0	
	14 Fixed	1MHz 🗆	60Hz 💷	0.0	Inclusive 🗉	Disabled	0	
Wiath(ns) TDES(ns)	15 Fixed 🛄	1MHz 🗆	60Hz 💷	0.0	Inclusive 💷	Disabled	0	
11 BSA/MPS Enable Channel 11 _ Rising Edge 10 900								
				_	-	_	_	
Rear Panel Triggers Trining Backbone Configuration								
Width(ticks) TDES(ticks) TCTL TPOL Channel out reserve	is 3-7 break ed triggers:							
Output 0 100 0 Enabled Rising Edge Channel 13 J Output 3: BP	PMS:8084:200 Diag	Headback LULSZ	10 BP					
Output 1 10 0 Disabled Rising Edge Channel 14 U Output 4: BP	PMS:8084:200 Calib	Control LCLS2	to BP					
Output 2 10 0 Disabled Rising Edge Channel 15 Output 5 BP	PMS:8084:200 BSA		More					
Output 8: BP	PMS-B084-201 Calib							
owner: or	0.000							

• Verify channel 0 and 1 are enabled with a fixed rate of 10Hz Set up your EDEF (Matlab sets up during run):

- NtoAvg number of shots to average
- NtoAcq number of samples to acquire
- Set Rate Mode = Fixed Rate
- Set Measurement Severity = Invalid Set Destination Mode = Disable
- .
 - Set Fixed Rate# to match your trigger rate (typically use [4] 100Hz)
 - 0 = 1 MHz
 - 1 = 71 kHz
 - 2 = 10 kHz

- 3 = 1 kHz
- 4 = 100 Hz
- 5 = 10 Hz
- 6 = 1 Hz

In a Matlab window run bsa resolution

- Open Matlab
 - Source the following if not done
 - ^o bash
 - o source /afs/slac/g/lcls/epics/setup/epicsenv-7.0.3.1-1.0.bash o source /afs/slac/g/controls/development/package/matlab/setup
 - /matlab 2017b setup local.bash
 - cd /afs/slac/g/lcls/users/BPM/LCLS_II/matlab
 - ° matlab &
 - ° Run bsa_resolution.m
 - ° Be sure to close Matlab when done
- Change SN inline 6
- Sets to acquire: 2000
- Is the resolution <1.5um in both planes?</p>

7. Calibration Test

- · Before starting verify the IOC is not running
- Install 50 ohm terminators on the front end of the board
- Start the IOC
- Refer to the SIOC:B084:BP02 Triggers screen for the calibration triggers status •
 - Adjust the RF Pulse Width from the RTM:
 - caput BPMS:B084:200:RFWD 6
 - This sets the RF width to 200ns
- · Adjust the attenuators of the board
 - o caput BPMS:B084:200:ATT2 #
 - I set this to about 10
 - o caput BPMS:B084:200:ATT1 #
 - I typically do not change this attenuation setting
 - caput BPMS:B084:200:CALA #
 - Set this to 10
- Check the calibration calibration in the triggers window)
 - CAL RED should have a waveform on the left
 - ° CAL GRN should have a waveform on the right
 - · CAL TOGGLE should show both the RED and GRN waveforms simultaneously
 - CAL signals should be constant, no skipped pulses
- · Disconnect the cables from the splitter and connect to oscilloscope
 - Verify a 10 dB of attenuation in line on the front of the oscilloscope for the port/ports to be used
 - Disable the calibration triggers
 - Remove the 50 ohm terminators
 - $^{\circ}$ Connect a cable to the red and green input of the AMC and to the scope
 - If only using one channel at a time verify calibration triggers are disabled in between switching the channel under test
 - Enable the calibration triggers
 - Verify calibration toggle is set for only one channel at a time Record the Vpp for both green and red channels

Using the 2-slot debug crate

- Start the software:
 - log in to lcls-dev3
 - ° ssh laci@cpu-b084-sp01
 - In bash:
 - . /afs/slac.stanford.edu/g/lcls/vol9/package/cpsw/framework/R4.4.2/env.slac.sh
 - rssi_bridge -a 10.0.0.101 -p8193 -p8194

Open the UI

- open a new lcls-dev3 window
- o cd /afs/slac/g/lcls/package/cpsw/cpswTreeGUI/current/
- ° ./env.slac.sh
- ^o python3 cpswTreeGUI.py --ipAddress=10.0.0.101 --rssiBridge=cpu-b084-sp01 --disableStreams ~disco /scripts/B084_TestStand/stripline_yaml/AmcCarrierBpmStriplineDDV1_project.yaml/000TopLevel.yaml Net.IODev&
 - Or ~disco/scripts/bash/ControlGUI.sh
- Under the mmio tab "right mouse" click "load file" <default.yaml>

Notes

- Use 300MHz, -5dB to start. Change amplitude as needed. If using a splitter, -2dB is good
- Bay 0 is the left bay, Bay 1 is the right bay
- Attenuator controls are under AppTop -> AppCore -> AmcBayX -> StriplCalCtrl
- 1f = attenuator full-on (lowest/no signal)
- 00 = attenuator full off (highest signal)

- DataValid and RawData are under AppTop -> AppTopJesd[XX] -> JesdRx
- TriggerCount is under AppTop -> DaqMuxV2[X]
- Typical things to check:
- Input capacitors:
 - ° C229
 - ° C230
 - ° C231
- C232
 Does the signal show up? Is it significantly lower than other channels?
- Try removing caps on bad channels to see if the signal improves. If not, it's a problem with the SMA connectors.
- Filters:
 - ° U18
 - ° U23
 - ° U28
 - ° U33
- · Check the top right corner (facing faceplate)- Is the signal less than 80% of the input signal?
- Bad filters have to be sent out for replacing
- Amplifiers:
 - '∘ U16
 - ° U17
 - ° U21
 - ° U22
 - U26U27
 - U27 • U31
 - ° U31
 - Remember to change attenuator values, the best are:
 - 0a (10dB)
 - 00 (0dB)
- MAKE SURE TO LOOK ACROSS THE CAPS AFTER THE AMPLIFIER
- Compare with a good channel to check that amplifier is working correctly
 ADC Clock Signal:
- ADC Clock Signal:
 - ° R105A/B
 - R105 should have a 1.5GHz square wave
 - 185A/B
 - 185 should have a 370MHz sine wave
- ADC bias along the bottom (for pins 2, 7 and 8)
 - Should have [some voltage] CHECK WITH A GOOD BOARD
 - Bad ADCs need to be sent out for replacing
- R26 and R27 should have 0V and 8V (or vice versa)
- R?? should have 5V

Programming AMC Carriers

- 1. Log onto lcls-dev3
- cd /afs/slac/g/lcls/users/BPM/LCLS_II/BPM/firmware
- 3. Run bash script (This will change depending on where you're doing the programming. Check the program to make sure it has the right SHM, slot, and CPU addresses.)
 - For the RF lab in B84: ./ProgramBPM_li00_sp01_s3.bash
 - For Thuy's lab in B34: ./ProgramBPM_CPU_hp05_s3.bash

Useful Commands

Caput [address] value - set a value Caget [address] value - read a value Ps -ef | grep ??? - check to see if matlab is hung up/still running ~disco/scripts/bash/bpm_launcher.sh

Other Programs

These programs can be found in ~disco/scripts/python

matViewer

- This can be used to look at the .mat files that were made for running the fake beam test.
- Two files are needed to run:
 - 000FileViewer.py
 - matplotlib_window.py
- The main window is 000FileViewer.py, this shows all the serial numbers for the found files
- matplotlib_window does what it sounds like, it will show the array that was made from the raw wave and the x y graph.

Graph_Attn_Sweep.py

- This takes the output of the attnsweep program and makes a graph
- it can take two arguments:
 - Required: the input file to process

- Optional: an output image
 The program will run with bash invoked and will draw a window on the screen with relevant data in a text box
 This can also be found in /afs/slac/g/lcls/users/BPM/LCLS_II/BPM/software/lcls2-py-scripts