SmartMotor Notes

Disabling limits:

® EIGN(2) 'Disable Left Limit'
® EIGN(3) 'Disable Right Limit'
® 7S 'Reset errors'

Initiating Motion:

ADT=100 'Set Target Acceleration/Deceleration’
VT=1000000 'Set Target Velocity'

PT=300000 'Set Target Position'

BRKRLS

G 'Go, Starts the move'

S 'stop motion’

BRKENG 'Engage brakes to avoid overheating'
RPA 'Current motor position in counts'

Writing/Running a Program:

Check test.sms

compile and download button on toolbar

Run

Notes: TWAIT is to wait for move to complete

Tuning PID:

ication. The main objective in tuning a servo is to get KP as high as possible, while
maintaining stability. The higher the KP, the stiffer the system and the more
under control it is. A good start is to simply query what the beginning point
is (RKP) and then start increasing it 10% to 20% at a time. It is a good idea
to start with Kl equal to zero. Keep in mind that the new settings do not take
effect until the F command is issued. Each time KP is raised, try to physically
destabilize the system by bumping or twisting it or have a program loop cycling
that invokes abrupt motions. As long as the motor always settles to a quiet rest,
keep raising KP. Of course if the SMI Tuning Utility is being used, it will employ
a step function and show more precisely what the reaction is.

As soon as the SmartMotor starts to find it difficult to maintain stability, find the
appropriate derivative compensation. Move KD up and down until the value is
found that gives the quickest stability. If KD is too high, there will be a grinding
sound. It is not really grinding, but it is a sign to go the other way. A good tune
is not only stable, but reasonably quiet. The level of noise immunity in the KD
term is controlled by KS.

The derivative term KD requires estimating the derivative of the position error.
While the simplest method is a backward difference, KS=0, this is inherently
noisy. The choices of KS=1, 2 and 3 provide increasing levels of noise immu-
nity at the expense of slightly increasing latency in the estimation. Since higher
latency will typically result in lower achievable PID loop gains, choose the best
74 compromise between smoothness and tracking performance. The default set-

PID Con

ting is KS=1.

After optimizing KD, it may be possible to raise KP a little more. Keep going
back and forth until there’s nothing left to improve the stiffness of the system.
After that it’s time to take a look at KI

KIl, in most cases, is used to compensate for friction; without it the SmartMotor
will never exactly reach the target. Begin with Kl equal to zero and KL equal
to 1000. Move the motor off target and start increasing Kl and KL. Keep KL
at least ten times Kl during this phase

Continue to increase Kl until the motor always reaches its target, and once

that happens add about 30% to Kl and start bringing down KL until it hampers

the ability for the Kl term to close the position precisely to target. Once that

point is reached, increase KL by about 30% as well. The Integral term needs

to be strong enough to overcome friction, but the limit needs to be set so that

an unruly amount of power will not be delivered if the mechanism were to jam
° or simply find itself against one of its ends of travel

Appendix C page 105 (commands)

What is homing?

Homing is a sequence of predefined motions that are normally required
in order to configure the system's absolute position after power up. The
homing sequence is carried out by searching for an absolute known
sensor along the mechanical travel, and updating the internal position
accordingly.

Essentially, when we start the motor, we do not know it's absolute
position. Homing means the motor would go to a position known, either
update it's position and start from there, or it would record it's encoder
counts, update it's absolute position, then add those encoder counts to
start from the position we started in.

Things to lookup:

= How to monitor how much current is being pulled by the motor?
" RUIA
= Ba 'get overcurrent status bit'






	SmartMotor Notes

