
CMT Action Requirements checklist

Functional Requirements for Package Management/Build System

See tables below for a detailed list of required and desired properties and functions for any replacement of CMT. Most come from the Requirements/Goals
section of the main . The tables may be used as checklists for the two proposed replacements, identified as CMT Action Committee Confluence page SCons
and . is meant as shorthand for ; that is, SCons plus additions written locally. Where appropriate the tables allow for NPMS SCons SCons Enhanced
checking off a requirement by implementing a standalone solution (Stnd), independent of (and callable by) both SCons and NPMS. Functions which should
be callable by one or more clients (RM, MRStudio, individual developer) are indicated

like this . Functions or parts of functions which are desirable but not immediately required are indicated [like this] in the Description section.

CVS, Package Management
Name Description SCons NPMS Stnd

Package
checkout

Check out requested tag (may have value HEAD) of a single package from CVS, installing in user's
workspace in a manner consistent with current directory/subdirectory conventions.

Worki
ng

Limited
recursive
checkout

Given a (one that refers to a list of other packages by name and CVS tag), check out all container package
packages it refers to.

Worki
ng

Dependency
tree

Given a package, determine all packages it depends upon.
Worki
ng

Find tags Given a package, return list of its CVS tags [of a particular syntactic form]
Plann
ed

Requirements on Requirements File Replacement
Name Description SCons NPMS

Inter-package
dependence

Ability to express dependence on other packages, optionally with version (=CVS tag) specification
Not
needed

Macro/include A way to express common forms in a single place which may be referred to by many packages. Should have a way to
supply arguments.

Plann
ed

Per-target
dependence

[Ability to specify dependence of individual target on other targets, both within the package under consideration or
external to it.]

Worki
ng

Per-operation
dependence

[Ability to specify that a particular dependence is in effect at compile time, at link time or at load time. Less interesting,
maybe entirely redundant, if we already have per-target dependence specification.]

Not
needed

Configure, build
Name Description SCons NPMS

Configure
If a configure step ("establish environment, get ready to build") is needed at all, it should be callable and there should
be a recursive variant. Whether configure options are set by an explicit operation or are inferred (e.g., from
environment variables) it must be possible to indicate OS, compiler, debug, etc.

Not
needed

Single
package
build,
recursive
build

Support request to build specified package and all it depends upon. [Would be better still if one could alternately
specify 'build only current package; if external inputs are absent, stop immediately with error']

Worki
ng

Libraries
Build one or both of static library and shareable, as specified in requirements-replacement file. Further distinguish
between Gaudi component and other shareables. For non-component shareable on Windows, make all public
members (function members and data members) available at link time to other packages.

Plann
ed

Export/Install, Run
Name Description SCons NPMS

Install The output of the build system should be in a form suitable for packaging for export and remote installation. In Progress

Run Run an application with supplied arguments. Any part of the build environment needed at run time should be transparently
available then, without special action by the client.

Planned
/Not
needed

Developer Support
Name Description SCons NPMS

https://confluence.slac.stanford.edu/display/SAS/CMT+Action+Committee

Path
mana
geme
nt

It should be easy for developers to

establish a local writable working directory
develop against an existing read-only release in such a way that local packages take precedence over those in the release
at compile, link and run time.

Plann
ed

Confi
gurati
on
switc
hing

It should be easy for a developer (or for a GUI application, on behalf of the developer) to switch from one environment to
another. Here might include items such as debug/release setting and path as in previous item. [It should be environment
possible to establish and use distinct environments simultaneously from different processes.]

Worki
ng

Debu
gging

All tools necessary for debugging an application built by the system should be available. For Windows this means project
/solution files so the application can be run in Visual Studio (and patched from there?). For unix systems it should be possible
to run applications from emacs/gdb or DDD (probably doesn't require anything special of build system beyond reasonably
portable and self-contained run-time environment for applications).

Plann
ed

J. Bogart

	CMT Action Requirements checklist

