Customizing the Event Display

The WIRED4 event display is set up to understand and display all standard LCIO objects such as tracks, clusters, reconstructed particles (including jets),
calorimeter and tracker hits etc. Often during development of analysis algorithms it is desirable to display extra objects. This mini-tutorial shows how to do
this within the org.lcsim framework.

The org.lcsim framework and the WIRED4 event display are not tied to each other, instead there is code in org.lcsim which converts the event into
intermediate HepRep objects.

If You Don't Like To Read Long Docs

Let's go through the example of how to put a list of Hep3Vect or s into the event and transform it to a list of HepRep object that can be displayed by
WIRED. The full code is in the class org. | csi m uti | . heprep. Hep3Vect or Convert er

cl ass Hep3Vect or Converter inplenents HepRepCol | ecti onConverter {
publ i c bool ean canHandl e(C ass k) {
return Hep3Vector.cl ass. i sAssi gnabl eFron(k);
}
public void convert(Event Header event, List collection, HepRepFactory factory, HepRepTypeTree typeTree,
HepRepl nst anceTree i nstanceTree) {
LCWVet aData neta = event. get Met aDat a(col | ecti on);
String name = neta.get Nanme();
int flags = neta.getFl ags();

HepRepType typeX = factory. createHepRepType(typeTree, nane);
typeX. addAtt Val ue("1 ayer", LCSi nHepRepConverter. H TS_LAYER);
typeX. addAtt Val ue("drawAs", "Point");

typeX. addAt t Val ue("col or", Col or. YELLOW ;

typeX. addAtt Val ue("fill", true);

typeX. addAtt Val ue("fill Col or", Col or. RED) ;

typeX. addAt t Val ue(" Mar kNane", " Box") ;

for (Hep3Vector hit : (List<Hep3Vector>) collection) {
HepRepl nst ance i nstanceX = factory. createHepRepl nstance(i nstanceTree, typeX);
HepRepPoi nt pp = factory. creat eHepRepPoi nt (i nstanceX hit.x(),hit.y(),hit.z());

Now we need to tell org.lcsim that it can display Hep3Vectors: Let's edit the constructor of the class package org. |l csi mutil. heprep.
LCSi nHepRepConverter ()

publ i c LCSi nHepRepConverter ()
{

try

{
factory = HepRepFactory.create();
regi ster(new Cal orinmeterH tConverter());
regi ster(new O usterConverter());
regi ster(new MCParticl eConverter());
regi ster(new Siniracker Hi t Converter());
regi ster(new TrackerH t Converter());
regi st er(new zZvTubeConverter());
regi ster(new TrackConverter());
regi st er (new ReconstructedParticl eConverter());
regi ster(new ZvVertexConverter());
regi ster (new Hep3Vect or Converter());

}
catch (Exception x)
{
throw new Runti neException("Coul d not create heprep factory", x);
}

We just have to make sure there is a line to register a new instance of the class we just wrote. As you can see, it's already there.
That's all there is to it. If you want to know more about the inner workings, read on, reader.

If You Have To Read Longer Docs

Let's go through the code step by step:
The basic skeleton looks like this:

cl ass Hep3Vect or Converter inplenents HepRepCol | ecti onConverter {

publ i c bool ean canHandl e(C ass k) {

return Hep3Vector.cl ass. i sAssi gnabl eFron(k);

}

public void convert(Event Header event, List collection, HepRepFactory factory, HepRepTypeTree typeTree,
HepRepl nst anceTree i nstanceTree) {

}
}

The convention is to give the class the name of the class that you wish WIRED to be able to display, followed by "Converter". It has to implement the HepR
epCol | ecti onConvert er, because we want to pick up a collection from the Event Header cache and display its elements.

The first function

publi c bool ean canHandl e(C ass k) {
return Hep3Vector. cl ass. i sAssi gnabl eFrom(k) ;
}

tells org.lcsim about the ability of this class. For every list in the EventHeader cache org.lcsim encounters, it tries to match the elements to the registered He
pRepCol | ecti onConvert er instances. The order in which you register your instance therefore matters. If the class of the elements returns t r ue for the
bool ean canHandl e() function, then this converter will be used to display the elements of the list.

The second function

public void convert(Event Header event, List collection, HepRepFactory factory, HepRepTypeTree typeTree,
HepRepl nst anceTree i nstanceTree) {
LCvet aData neta = event. get Met aDat a(col | ection);
String nane = neta.get Name();
int flags = nmeta. getFl ags();

HepRepType typeX = factory. creat eHepRepType(typeTree, nane);
typeX. addAtt Val ue("I ayer", LCSi nHepRepConverter. H TS_LAYER);

typeX. addAt t Val ue("drawAs", "Point");
typeX. addAtt Val ue("col or", Col or. YELLOW ;
typeX addAtt Val ue("fill", true);

typeX. addAtt Val ue("fill Col or", Col or. RED);
typeX. addAtt Val ue(" Mar kNane", " Box") ;

for (Hep3Vector hit : (List<Hep3Vector>) collection) {
HepRepl nst ance i nstanceX = factory. creat eHepRepl nstance(i nstanceTree, typeX);
HepRepPoi nt pp = factory. creat eHepRepPoi nt (i nstanceX, hit.x(),hit.y(),hit.z());

is used to communicate between org.Icsim objects and its HepRep representations. For each type of element you want to display, you will have to create a
HepRepType. The name can be the name of the collection in the EventHeader (as is the case in the example) or any string you want. Please make sure it
is unique.

We then add some properties to the representation. A complete list of available options and parameters is posted elsewhere.

Finally, for each element in the list of org.lcsim objects (Hep3Vect or in this case) we create a HepRepl nst ance object. It inherits its properties from the H
epRepType it belongs to, but you can overwrite the properties. You might, for example want to assign certain colors to different instances, grouping them
by momentum, parent, distance, or whatever you can think of. Now that we have created a HepRepl nst ance, we want to draw it. In order to do that we
need to create one (or more) HepRepPoi nt instances. In this example, where we draw the Hep3Vect or as a point, one HepRepPoi nt is sufficient, but
there may be cases where you want to create a more complex representation that requires more points to draw.

Please have a look at the classes in the package or g. | csi m uti | . hepr ep for further inspiration.

References

® DrawAs Values
® Attribute Defaults

http://java.freehep.org/heprep/DrawAsValues.html
http://java.freehep.org/heprep/AttributeDefaults.html

	Customizing the Event Display

