
1.
2.
3.
4.
5.
6.
7.
8.
9.

a.

b.

c.

10.
11.
12.

SLIC from Scratch on Windows
The SLIC full simulator program requires the setup of 8 different software packages, not counting the required build tools.

This guide provides a step-by-step walkthrough covering package and tool installation.

It presumes nothing except a working Windows machine (2000, XP) with internet access. Therefore, you may only need to use parts of this installation
guide if you have some of the external dependencies already installed.

Standalone Windows Distribution
Cygwin needs to be installed to run SLIC.

Download the SLIC Windows binary from this location.

http://www.lcsim.org/dist/slic/slic-current-WIN32-g%2B%2B-bin.tar.gz

Open a Cygwin window and go to the directory where you saved the tarball.

Untar the file after it is saved to your computer.

tar -zxvf slic-current-WIN32-g++-bin.tar.gz

Now test the binary.

cd SimDist
./scripts/slic.sh

The slic usage screen should show.

Preliminary Setup for Installation

Cygwin

The Cygwin Linux emulation package is a prerequisite for building on Windows.

Unfortunately, the support for native WIN32 using project files is lacking.

These are brief instructions for installing the necessary Cygwin packages.

Download the .Cygwin setup program
Double-click on it and click .Next
Select and click .Install from Internet Next
Enter your preferred and click .Root Directory Next
Enter your preferred , which can be the same as the , and then click .Local Package Directory Root Directory Next
Select and click .Direct Connection Next
Select a site from the . Servers inside your country will probably be fastest. I use .Available Download Sites ftp://ftp.sunsite.utk.edu
Click .Next
In the window, you need to make sure that the following tools are selected by clicking in the corresponding box Cygwin Setup - Select Packages
under the column until you see a version number.New

Required packages.
Devel -> cvs
Devel -> gcc-core
Devel -> gcc-g++
Devel -> make
Base -> gzip
Base -> tar

If OpenGL visualization is being used, these should also be installed.
X11 -> ALL
Graphics -> OpenGL

Tool for downloading package tarballs and zip files.
Web -> wget

Click after you have selected the packages.Next
Cygwin will now automatically download and install all the selected packages. It might take awhile, so now is the time to go get some coffee.
If desired, select or , and click .Create icon on Desktop Add icon to Start Menu Finish

Cygwin Packages

It may be easier to simply install all Cygwin packages instead of selecting them individually.

http://www.lcsim.org/dist/slic/slic-current-WIN32-g%2B%2B-bin.tar.gz
http://www.cygwin.com
http://www.cygwin.com/setup.exe
ftp://ftp.sunsite.utk.edu

1.
2.

3.

1.

2.

3.

1.
2.

3.

If you need additional information on this installation process, Norman Graf has .more detailed Cygwin installation instructions

Testing the Cygwin Command Line Tools

Select Start -> Programs -> Cygwin -> Cygwin Bash Shell
Check that the following commands do not result in a message.command not found

cvs
gcc
g++
tar
wget
make

If a command was not found, rerun the Cygwin setup to select the missing package, making sure to select on the Keep Cygwin Setup - Select
 screen so that all the packages are not reinstalled.Packages

Throughout this guide, I assume you are using or at least another -compatible shell. I take no responsibility if you decide to use , , et al.bash sh csh tcsh

Work Area

The SLIC package and its dependencies will be installed into a common work area.

From the Cygwin shell, create a work directory and go into it.

cd /cygdrive/c
mkdir sim
cd sim

Create the file with the following contents.setup.sh

#!/bin/sh
export sim_work=/cygdrive/c/sim

Source the script to setup the work dir.

source setup.sh

The script will henceforth be referred to as . At the end, it will have all of the environment variables required by SLIC and its $sim_work/setup.sh setup.sh
dependencies. Throughout the guide, any time a line is added to , you should also execute this line in your current shell. Probably the setup.sh bash
easiest way to do this is by adding to the script first and then (re)sourcing it.

Java

Java is required for LCIO installation.

Install an appropriate JDK from with a minimum version of 1.4.2.http://java.sun.com/
In your , set and to the Java installation area.setup.sh JAVA_HOME JDK_HOME

export JAVA_HOME=/cygdrive/c/java/jdk1.4.2/
export JDK_HOME=${JAVA_HOME}
export PATH=$PATH:$JDK_HOME/bin

To test the Java installation, try to run the Java compiler.

javac

The above directory is an example only. You need to replace it with the correct path to your JDK.JAVA_HOME
Technically, installation of the LCIO C++ libraries only requires a Java JRE, but the JDK is useful for doing reconstruction and analysis where you may
want to compile Java programs.

Proceed to Package Installation!

http://www-sldnt.slac.stanford.edu/nld/new/Docs/GettingStarted/Cygwin/
http://java.sun.com
http://java.sun.com/

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

You are now ready to install the simulation packages.

The same Cygwin window should be used throughout the installation process in order to preserve the environment variables.

Package Installations

CLHEP

CLHEP has installation instructions (http://wwwasd.web.cern.ch/wwwasd/lhc\+\+/clhep/INSTALLATION/newCLHEP-install.html) for version 1.9 and up. But
you should not need them to setup the package.

Create a working directory for CLHEP and go into it.

mkdir clhep
cd clhep

Download the CLHEP tarball.

wget http://cern.ch/clhep/clhep-1.9.2.0.tgz

Unzip to your work directory.

tar -zxvf clhep-1.9.2.0.tgz

Change to CLHEP directory.

cd 1.9.2.0/CLHEP

Configure the build. (This took 15-20 minutes on my machine.)

./configure --prefix=`cd ../..; pwd` --disable-shared

Build the library and install it. (Also takes a long time!)

make
make install

Add the following to setup.sh

export CLHEP_BASE_DIR=$sim_work/clhep

Now that the CLHEP dependency is satisfied, you should be able to install Geant4.

Geant4

Geant4 is probably the most difficult application to install of SLIC's dependencies, because there are a lot of options, it takes a long time, and it requires
several different commands. I will describe a minimal installation procedure with support for built-in UI and visualization drivers. You can always make
update the libraries later if you decide to change these settings.

The default Geant4 library settings for WIN32 are granular and static. You may choose other settings, but this could require changes in installation settings
"down the line" that I may not mention.

Return to the work dir, create a Geant4 subdir and go into it.

cd $sim_work
mkdir geant4
cd geant4

Download the Geant4 tarball.

wget http://geant4.cern.ch/geant4/source/source/geant4.7.1.tar.gz

Unzip it.

http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/
http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.html

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

tar -zxvf geant4.7.1.tar.gz

Set the following variables in . (You should not need to run Geant4's script.)setup.sh Configure

export G4INSTALL=${sim_work}/geant4/geant4.7.1
export G4SYSTEM=WIN32-g++

If you would like to enable OpenGL visualization, add the following variable definitions.
This assumes you installed the X11 libraries when you set up cygwin.

export OGLHOME=/usr/X11R6
export G4VIS_BUILD_OPENGLX_DRIVER=1
export G4VIS_USE_OPENGLX=1

Go into the Geant4 base dir.

cd geant4.7.1

LCPhys requires that a special flag is set in order to use the latest Kaon model. At the end of , insert the following line config/architecture.gmk ex
:actly as it appears below

CPPFLAGS += -DG4BERTINI_KAON

Hopefully, this hack will be remedied soon!
Now for another lovely Geant4 hack. In order to successfully compile the HepRep driver, the following line in the file config/sys/WIN32-g++.gmk

CXXFLAGS := -Wall -ansi -pedantic -pipe

should be replaced with

CXXFLAGS := -W -Wall -ansi -pedantic -Wno-non-virtual-dtor -Wno-long-long
CXXFLAGS += -Wwrite-strings -Wpointer-arith -Woverloaded-virtual -pipe

Build the libraries, which will be placed at . (This could take up to a few hours depending on your machine.)$G4INSTALL/lib/WIN32-g++

cd source
make

Install the headers into .$G4INSTALL/include

make includes

Build the physics list libraries. These will go into .$G4INSTALL/lib/plists/WIN32-g++

cd ../physics_lists/hadronic
make

Hopefully, Geant4 has been installed successfully, and you don't have too many more gray hairs.

LCPhys

SLIC requires a special physics list written by Dennis Wright for Linear Collider physics.

Go back to the work dir.

cd $sim_work

http://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/ilc/ilc_physics_list.html

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

Checkout the physics list from CVS.

cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd checkout LCPhys

Assuming that the environment from the Geant4 installation is still in place, you can build this like any other physics list, and the library should be
installed into .$G4INSTALL/lib/plists/WIN32-g++

cd LCPhys
make

Set the LCPhys variable in .setup.sh

export LCPHYS_BASE=$sim_work/LCPhys

LCIO

LCIO provides binary output capabilities.

Installation requires a working Java runtime for support.ant

LCIO has a with a whole . Thanks, Frank!very nice manual section on installation

I will still walk you through the basic procedure.

Go back to the work dir.

cd $sim_work

Checkout LCIO from CVS.

cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcio checkout lcio

Add these lines to your .setup.sh

export LCIO=${sim_work}/lcio
export PATH=$LCIO/tools:$LCIO/bin:$PATH

Build the libraries using the bundled and tools.aid ant

cd lcio
ant aid.generate cpp

Xerces-C++

Go back to the work dir, create a subdir for Xerces-C++, and go into it.

cd $sim_work
mkdir xercesc
cd xercesc

Download the Xerces tarball.

wget http://www.apache.org/dist/xml/xerces-c/xerces-c-src_2_6_0.tar.gz

Unzip the tarball.

tar -zxvf xerces-c-src_2_6_0.tar.gz

Set for the build in your environment, only.XERCESCROOT

http://lcio.desy.de/
http://lcio.desy.de/v01-04/doc/manual_html/manual.html
http://lcio.desy.de/v01-04/doc/manual_html/manual.html#SECTION00030000000000000000
http://xml.apache.org/xerces-c/

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

1.

2.

export XERCESCROOT=${sim_work}/xercesc/xerces-c-src_2_6_0

Go into the Xerces-C++ build area.

cd xerces-c-src_2_6_0/src/xercesc

Configure the build.

./runConfigure -pcygwin -cgcc -xg++ \
-minmem -nsocket -tnative -rpthread \
-P `cd ../../..; pwd`

Build and install it.

make
make install

In , set to the installation area and add the DLL location to the .setup.sh XERCESCROOT PATH

export XERCESCROOT=${sim_work}/xercesc
export PATH=$XERCESCROOT/bin:$PATH

When rebuilding Xerces-C++, which you will probably not need to do once you get it working, needs to be set back to the Xerces-C++ XERCESCROOT
source area rather than the installation base.

GDML

GDML's CVS is not directly accessible from the command line, but a tarball is available through a WWW interface.

Download a snapshot of the current CVS head using this link in your browser: http://simu.cvs.cern.ch/cgi-bin/simu.cgi/simu/GDML2/GDML2.tar.
.gz?tarball=1

Save the tarball to , which should be .sim_wrk C:\sim
Unzip the tarball.

tar -zxvf GDML2.tar.gz

Change into the CPPGDML directory.

cd GDML2/CPPGDML

Set in .GDML_BASE setup.sh

export GDML_BASE=${sim_work}/GDML2/CPPGDML

Configure the build.

./configure --enable-shared-libs=no

Build it.

make

LCDD

Go to the work dir and checkout LCDD.

cd ${sim_work}
cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd checkout lcdd

Go into the LCDD dir.

http://gdml.web.cern.ch/GDML/
http://simu.cvs.cern.ch/cgi-bin/simu.cgi/simu/GDML2/GDML2.tar.gz?tarball=1
http://simu.cvs.cern.ch/cgi-bin/simu.cgi/simu/GDML2/GDML2.tar.gz?tarball=1
http://www.lcsim.org/software/lcdd

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.
2.

3.

4.

cd lcdd

Configure the build.

./configure

Build the library.

make

Set the variable in .LCDD_BASE setup.sh

export LCDD_BASE=${sim_work}/lcdd

SLIC

Finally, you are ready to install the simulation "hub" package. After this, you will have a fully-featured Geant4 simulator on your Windows machine.

Go to the work dir and checkout SLIC.

cd ${sim_work}
cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd checkout slic

Go into the SLIC dir.

cd slic

Set the variable in .SLIC_BASE setup.sh

export SLIC_BASE=${sim_work}/slic

Configure the build.

./configure

Build the binary (note that we currently do not support visualization).

export G4VIS_NONE=1
make all

If the build completes successfully, you should see SLIC's usage statement from the test run.

Running SLIC after Installation

When you want to run later in a Cygwin shell, should be in the , so that Windows can find the DLL at runtime. Since the other $XERCESCROOT/bin PATH
applications were linked-in statically, this should be the only setup requirement.

This is the procedure for running SLIC from the Cygwin commandline.

Select .Start -> Programs -> Cygwin -> Cygwin Bash Shell
Add Xerces-C++ bin to the path.

export PATH=/cygdrive/c/sim/xerces/bin:$PATH

Go to the SLIC directory.

cd /cygdrive/c/sim/slic

Run the executable.

bin/WIN32-g++/slic [options]

http://www.lcsim.org/software/slic

If you receive an error message about a missing DLL , then make sure that the is setup correctly and Xerces-C++ was properly cygxerces-c26.dll PATH
installed.

If you encounter difficulties running macros, it may be due to the different DOS and Unix end-of-line definitions. You can convert files using:

dos2unix mymacro.mac

In order to run with OpenGL visualization, an X-server needs to be running on your machine.

This command will start the Cygwin X-server.

startxwin.sh

Then you need to run SLIC from the xterm that pops-up. At least on my setup, it does not work to run the binary from the plain Cygwin window.

Final Setup Script

The final version of (without OpenGL visualization) should be similar to this.setup.sh

#!/bin/sh

1. work area
export sim_work=/cygdrive/c/work/nsim

2. java
export JAVA_HOME=/cygdrive/c/Java/jdk1.4.2
export JDK_HOME=${JAVA_HOME}
export PATH=${JAVA_HOME}/bin:${PATH}

3. clhep installation area
export CLHEP_BASE_DIR=${sim_work}/clhep

4. geant4
export G4INSTALL=${sim_work}/geant4/geant4.7.0.p01
export G4SYSTEM=WIN32-g++

5. LCPhys
export LCPHYS_BASE=${sim_work}/LCPhys

6. LCIO
export LCIO=${sim_work}/lcio
export PATH=$LCIO/tools:$LCIO/bin:$PATH

7. Xerces-C++ installation area
export XERCESCROOT=${sim_work}/xercesc
export PATH=$XERCESCROOT/bin:$PATH

8. GDML
export GDML_BASE=${sim_work}/GDML2/CPPGDML

9. LCDD
export LCDD_BASE=${sim_work}/lcdd

10. SLIC
export SLIC_BASE=${sim_work}/slic

The above should be sufficient to "bootstrap" any future (re)builds.

Done!
That's it.

Happy simulating!

See links in the next section for more information.

If you think this guide could be improved in any way, then please contact the author

Links
Geant4 on Windows with CL and Cygwin

https://confluence.slac.stanford.edu/display/~jeremym
http://geant4.slac.stanford.edu/tutorial/installation/Geant4.8.0.p01/Windows/Geant4_8_0_p01_Windows_Installation.htm#_Getting_and_Installing

	SLIC from Scratch on Windows

