Classifying Blazar Candidates of Uncertain type in the fourth Fermi-LAT catalog by machine learning techinques

Miloš Kovacecvic, Graziano Chiaro, Gino Tosti, Sara Cutini.

In the Fermi-LAT Fourth Source Catalogue (3FGL) about 50% of the sources have no clear association with a likely -ray emitter. We use machine learning techinque aimed at distinguishing BL Lacs from FSRQs to investigate the source subclass of uncertain (BCU) or unassociated (UCS) sources characterised by -ray properties very similar to those of Active Galactic Nuclei.

This work is a follow up of previous papers: https://arxiv.org/abs/1607.07822, https://arxiv.org/abs/1705.09832, https://arxiv.org/abs/1808.05881, https://arxiv.org/abs/1602.00385 and will use the 2019 optimization of the original algorithm as described in: Optimizing neural network techniques in classifyingFermi-LAT-ray sources.

The result of this study will suggest a new zoo for 4FGL -ray objects, opening up new considerations on the population of the -ray sky, and it will facilitating the planning of significant samples for rigorous analyses and multiwavelength observational campaigns.

4FGL BCUs Classification

Class	1FGL	2FGL	3FGL	4FGL
BL Lac	295 (44%)	436 (41%)	660 (38%)	1116 (36%)
FSRQ	278 (42%)	370 (35%)	484 (28%)	686(22%)
BCU	92 (14%)	257 (24%)	573 (34%)	1329(42%)
Total	665	1063	1717	3131

Table 1. Blazar class distribution in Fermi-LAT catalogs.

Classifying BCUs, using a supervised machine learning method based on an artificial neural network, probabilities for each of 1329 uncertain blazars to be a BL Lac or FSRQ are obtained.

Using 90% precision metric, 801 can be classified as BL Lacs and 406 as FSRQs while 122 still remain unclassified.

Here the full list 4FGL BCUs_ANN_table.txt

A spectrometric optical observation campaign will be organized to confirm the data resulting from the neural algorithm.