Pipeline Il Variables and Substreams

Pipeline Il Variables and Substreams

Pipeline Il introduces a new concept of variables. Variables can be defined in several places:

In the XML file which defines a task, at the level of a task, a process.
. When a stream or substream is created or rolled back

By script processes ("scriptlets”)

By batch jobs

rone

Variables specified in the XML are typically used to define "constants”, while variables passed in to the stream or computed by processes provide the
ability to perform runtime calculations.

Defining constants in XML

Variables can be defined within the <task> or <process> tag.

example.xml

<vari abl es>
<var name="confi gdir">${jobdirroot}/config</var>
<var name="nctSrcldfile">${outdir}/${pipeline.task}-${sixdigstreant_ncsrcld.txt</var>
<var name="jobdirroot">/nfs/farnf g/ gl ast/u26/ MC-t asks/ ${ pi pel i ne. t ask}/ </ var >
<var name="outdir">${j obdi rroot}/out put/${sixdi gstrean}</var>
<var name="scDat afi| eLD"'>${LDprefi x}/scDat a: run- ${si xdi gst reant </ var >
<var name="ncSrcldfil eLD">${LDprefix}/nmcSrcld:run-${sixdi gstreant</var>
<var name="scDat afil e">${out dir}/ ${pi peline.task}-${sixdigstreant_scData_0000.fits</var>
<var name="eventfile">${outdir}/${pipeline.task}-${sixdigstreant_events_0000.fits</var>
<var name="LDprefi x">/ Servi ceChal | enge/ ${ pi pel i ne. t ask} </ var >
<var name="si xdi gstreant >${f or mat (pi pel i ne. stream "%06d")} </ var>
<var name="eventfilelLD'>${LDprefix}/events:run-${sixdi gstrean}</var>
</vari abl es>

Defining constants at stream creation

There are currently three ways to create new streams

1. Using the pipeline Il web interface
2. Using the pipeline Il command line interface
3. Using the pipeline Il Java client

In the first two cases variables are passed in as a string, of the form:

<vari abl e>=<val ue>[, <vari abl e>=<val ue>. . .]

for example:

a=3, b=2. 5, c=" Sonet hi ng"

The type assigned to the variable is based on its value, for example in the above example a is an integer, b is a float and c is a string.

In the third case (using the Java client) variables can be specified either as a string, or as a Map<String,Object> of variables names and values.

Prerequisites

Prerequisites allow the XML file that defines a task to require that certain variables be set at stream creation time. If values are not given the stream
creation will fail. Prerequisites are just the minimal set of variables that must be set, it is always possible to specify additional variables.

Defining constants at stream rollback time

Currently stream rollback is only available via the web interface. When rolling back streams you will be given an opportunity to give new values to any
variables set at the stream level, or to define new variables.

Defining variables in a batch job
When a batch job is run by the pipeline it creates a file called pipeline_summary in the working directory of the

job. This file is sent (by email) to the pipeline server at the start and end of the batch job. The file is in the format of a Java properties file. It contains by
default information required by the pipeline itself (see example below), but users can add extra lines of the form:

Pi pel i ne. <vari abl e>: <val ue>

Any such lines will be recorded in the pipeline database by the pipeline server, and will become variables accessible to other processes running in the
same stream.

Bash functions have been set up to make it slightly easier to do this from a bash script:

pi pel i neSet <vari abl e> <val ue>
pi pel i neCr eat eSt r eam <subt ask> <streanp [<env-var-|ist>]

(D Don't use pipeline_summary filename directly

Don't rely on the summary file being called pipeline_summary, as this may change in future. Rather use the environment variable
PIPELINE_SUMMARY which will translate to the absolute path of the summary file.

Example pipeline_summary file

From: pipeline-prod@slac.stanford.edu
To: pipeline@slac.stanford.edu
Subject: 11513

Errors-To: tonyj@slac.stanford.edu

Processinstance: 11513

Host: cob0343

StartTime: Sun Nov 19 20:02:47 PST 2006

WorkDir: /nfs/farm/g/glast/u26/MC-tasks/obssim-ST-v7r6p1/output/000001
LogFile: /nfs/farm/g/glast/u26/MC-tasks/obssim-ST-v7r6p1l/output/000001/logFile.txt
Elapsed: 5231.17

User: 5151.14

System: 4.19

ExitCode: 0

EndTime: Sun Nov 19 21:29:59 PST 2006

Signals:

Status: Ended

Defining variables in a scriplet

Pipeline tasks can contain scriptlets, which must currently by written in Jython. Each scriptlet has a pre-defined object called pipeline which can be used to
interact with other processes in the same stream or within a substream of the current stream. The pipeline object contains one method which allows
variables to be defined by the scriptlet.

voi d setVariable(String varNane, Object val ue);

Any such lines will be recorded in the pipeline database by the pipeline server, and will become variables accessible to other processes running in the
same stream.

Accessing variables from a scriptlet
Before a scriptlet executes the pipeline server collects all the variables from
1. The task
2. The process
3. Any parent streams
4. The current stream

and makes all of these available as predefined (python) variables in the scriplet. They can be used just like any other language variable in the scriptlet.

In addition the scriplet has access to a number of methods which allow it to access variables from other processes in the same stream, or substream.

Pipeline.java

Processl nstance get Processl nstance(String process);
Substream get Substrean(String subtask, int stream;
Li st <Substreanr get Substreans(String subtask);

Processinstance.java

String getName();

Dat e get EndDat e();

Date getStartDate();

Dat e get SubnitDate();

int getStrean();

String getStatus();

int get ExecutionNunber();

int getExitCode();

bj ect getVariable(String varNane);
Map<String, Object> getVariables();

Substream.java

int getStrean();
String get Task();
Processl nstance get Processl nstance(String process);

See the Java Documentation for up-to-date details on these classes.

Accessing variables from a batch job
Before a batch job executes the pipeline server collects all the variables from
1. The task
2. The process
3. Any parent streams
4. The current stream

and makes all of these available as environment variables in the batch job.

@ To Do

Currently all of the variables defined above are made available as environment variables, in future we may make it possible to control which
variables become environment variables.

If it is required for a batch job to access a variable from a previous process this can be achieved by explicitly setting a variable in the process which defines
the job.

https://glast-ground.slac.stanford.edu/docs/org-glast-pipeline-server/apidocs/org/glast/pipeline/server/scriptlet/package-summary.html

ExampleJob.xml

<process nanme="stepB">
<notation>Scriptlet Test Step B</notati on>
<vari abl es>
<var name="DERI VED'>Stream ${pi pel i ne. strean} ${pi peline. getProcesslnstance("stepA").getVariable
("message")} </ var>
</vari abl es>
<j ob>
pi pel i ne-set nessage "Hello from batch: ${DERI VED}"
</ j ob>
<depends>
<after process="stepA'/>
</ depends>
</ process>

A complete example

The following example shows many of the features discussed above.

<?xm version="1.0" encodi ng="UTF-8"?>
<pi pel i ne
xm ns="http://gl ast-ground. sl ac. st anf ord. edu/ pi pel i ne"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi:schenmaLocation="http://gl ast-ground. sl ac. st anf ord. edu/ pi peline http://glast-ground. sl ac. stanford. edu
/ Pi peline-I1/schemas/ 2.0/ pi peline.xsd">
<task nane="ScriptletTest" version="2.2" type="Data">
<not at i on>Just Testi ng</notati on>
<process name="stepl">
<notation>Scriptlet Test Step 1</notation>
<l--
<script |anguage="python">
<! [CDATA[
pi pel i ne. setVari abl e("nessage”,"Hell o from Stepl")
for i in range(10,12):
pi pel i ne. creat eSubst rean(" Test Subt ask", i)

	Pipeline II Variables and Substreams

