Two Phase Transitions

We propose to use a two-phase approach for each transition (after CONNECT) in the DRP, inspired by the LCLS-I approach

The first phase is handled by a ZMQ broadcast, so configures can happen in parallel
The second phase is handled in the timing system thread. This phase "sweeps" out the results from the first phase
The control level sends out the second phase after the first phase is completed
We will try to run as much code as possible in the ZMQ thread in order to make the TS thread "sweep" as quick as possible
The timing system thread is responsible for all xtc writing
If a DRP has N segment-level workers, only one of them will receive the timing system transition
Since the mon nodes quickly cache the relevant transition, their "completion” is ignored in this process
All timeouts for the two phases are done by the control level
o each node's first-phase transition (maybe just configure and configUpdate) specifies a timeout value, perhaps with the CONNECT
collection message
© hopefully the second phase doesn't need a transition-dependent timeout, but if it does it will be specified in a similar manner to the first
phase
® The ZMQ thread should inform the timing-system thread of its config JSON, so it can be appended to the XTC
® The timing-system thread's "complete” message is transmitted via the ZMQ thread, since that thread has knowledge of the appropriate sockets.

Some implementation details:

® | think this is done with the "inprocSend" ZMQ context in DrpBase.cc.
® The phasel response to the control level from the drp nodes is in PGPDetectorApp.cc:handlePhasel()

Control

Phase 2 “Sweep”
(sent through timing system to TS threads)

Phase 1
(broadcast to ZMQ threads)

Segment Worker

i
|

DRP (EbReceiver Thread)

|

Complete

L Eb ZMQ)

'— DRP (ZMQ)

MEB Discussion
April 15, 2022: claus, caf, cpo

Ric found that in UED the disable transitions were being delayed by several seconds, queueing up a few of them and creating buffering problems for the
meb and difficult-to-understand crashes (perhaps because we only have 1 buffer for the disable transition?). We discussed two options to address this,
allowing the meb to participate in the control.py decision about when to execute the next transition:

option (1) is having the meb participate in the phase2 sweep (like teb)
- more work for ric
- have to generate the "inproc” (complete) message
- complication: has to handle slowupdate in a special way
- more self-contained
- ric worries that meb buffers may not be promptly returned to the drp: maybe wouldn't work?

option (2) is meb becomes like a drp: generate it's on phase2 complete and send to control.py via ZMQ "inproc" message
- more work for caf
- could more precisely identify the meb as being a problem if meb crashed
- touches both drp and control.py code

does the above decision affect speed of phase2?
- i think the answer is no: meb doesn't do anything in phase2

tentative decision is to try option (2)


http://DrpBase.cc

	Two Phase Transitions

