
Starting a Web Application
The following document illustrates how to get started writing a web application using common code that we have been using or developing over the last
few years. We also describe how to deploy the application to a web server.

Web Application Skeleton
To download the skeleton of the web application do a of the module (CVSROOT is cvs export org-glast-web-base-application :ext:USERNAME@glast-

 where is you). If you are using Tortoise CVS you have to select "CVS checkout .." and unser "Options" select java.slac.stanford.edu:/cvs/java USERNAME
"Export".

You should now be able to open this maven1 project in Netbeans and deploy it to the bundled Tomcat Server.

GLAST Commons

The is a collections of common code that can and should be shared across different GLAST web application providing a uniform look GLAST Commons
and feel. The following items are provided by the GLAST Commons and are used in the skeleton provided above:

style sheet If included in your jsp page, it will give your page the style shared by all other applications. This style sheet is loaded when needed
via the web, so any change to the GLAST Commons style sheet will propagate to all the applications using it. By default the style sheet is
included in the templates described below, so you should not have to include it.Sitemesh
GLAST Logo This servlet creates the GLAST logo for a provided title. This is also included by default in the Sitemesh templates.
Date and Date/Time Picker These are javascript functions that make it easier to select either Dates and/or Times in your application. Examples
are provided in the jsp file: src/webapp/pickers.jsp

Filters

The GLAST Commons provide three filters that are by default included in the above skeleton application:

Login A filter that monitor the login status of users with our central single-sign-on CAS server. This filter makes sure that once a user logged in,
its logged-in status is preserved across applications.

Cookies Most of our applications require cookies. This filter checks that the user's browser allows cookies to be set and warns the user if they are
disabled.

Multipart This filter allows form data, including uploaded files, to be submitted using enctype="multipart/form-data".

To disable any of these filters you'll have to remove their specification in .src/webapp/WEB-INF/web.xml

Sitemesh

Sitemesh is used to decorate the pages, making sure they all get a similar look and feel. Please refer to the for more information.sitemesh documentation

The main sitemesh related files are the following:

src/webapp/WEB-INF/sitemesh.xml Sitemes configuration file in which appropriate modules are loaded to handle frames.

src/webapp/WEB-INF/decorators.xml This is the mapping between your jsp pages and the templates to be used to decorate them. In this
example we map all the pages to a common decorator, but for three pages belonging to a which need to have special decorators. The frame
following are the decorators used:

src/webapp/decorators/basicDecorator.jsp common decorator for all pages. It adds a common style sheed from the GLAST
commons, a style sheet specifit to this application (src/webapp/css/style.css), it adds the logo on the top right of the page, the login
button and the footer with the last modified date.
src/webapp/decorators/justFooterDecorator.jsp decorator that just adds the footer, used for the main window of frames. It adds the
last modified date at the bottom of the page.
src/webapp/decorators/justHeaderDecorator.jsp decorator that just decorates the header with the logo and the login button. This is
used for the header of a frame.
src/webapp/decorators/justStyleDecorator.jsp decorator that just adds style sheets. Used for the menu/tree window of a frame.

The above decorators share common code stored in the form of tag files:

src/webapp/WEB-INF/tags/decorators/footerDecorator.tag Prints the last modified date in the footer.
src/webapp/WEB-INF/tags/decorators/headerDecorator.tag Adds the logo and the login button to the header.

Finally for sitemesh to work a filter needs to be added to the application. It's the filter that is responsible for mangling your jsp code with the decorating
templates. This is done in with the following code:src/webapp/WEB-INF/web.xml

http://glast-ground.slac.stanford.edu/Commons/
http://www.opensymphony.com/sitemesh/

 <filter>
 <filter-name>sitemesh</filter-name>
 <filter-class>com.opensymphony.module.sitemesh.filter.PageFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>sitemesh</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

If you are not interested in sitemesh you can remove the filter definition in web.xml and all the above files.

Display Tag For Tables

We use the to create sortable tables. We provide a simple jsp example () that displays a sample list of items Display tag library src/webapp/table.jsp
created using the java classes in .src/main/java/org/glast/web/base/table

To use the Display tag library all you have to do is to include the tag library definition at the top of your jsp page:

 <%@taglib prefix="display" uri="http://displaytag.sf.net" %>

and use the prefix to access the table tags.display

Additionally, if you specify the table's class to be , as done in the example below, you will get the default styles provided by the datatable GLAST Commons
and used by most of the other GLAST web applications.

 <display:table class="datatable" name="${table}" defaultorder="ascending" sort="list" id="tableId" >

Relevant to Display Tag is the properties file which allows some configuration; please refer to the src/webapp/WEB-INF/classes/displaytag.properties Di
 for a list of all the available properties.splay tag configuration documentation

AIDATLD For Plots

We create our plots using the jsp tags. The jsp file shows a sample plot extracted from the .AIDATLD src/webapp/aidaPlot.jsp AIDATLD examples

FreeHEP WebUtil

The provides some additional common code to be used in web application:FreeHEP WebUtil library

tabs An example is shown in . These tags have the advantage that the body of the tag is executed only the the tab is src/webapp/tabs.jsp
selected.
Non Available Filter Allows to disable the web application and redirect incoming request to a different page (in this case to src/webapp

). To try it out go to /nonAvailable.jsp deployment host/WebBaseApplication/admin/available/http://your
tree Allows the creation of navigation trees as shown in the jsp file .src/webapp/tree.jsp

Related to the FreeHEP WebUtil code is the properties file that allows to configure the above src/webapp/WEB-INF/classes/freehepWebapp.properties
items. Please refer to the for a list of the available parameters.FreeHEP WebUtil documentation

Logging

By default logging is turned on, using . The logging parameters are controlled via the properties file java.util.logging src/webapp/WEB-INF/classes
. For additional information on logging in Tomcat, please refer to the following ./logging.properties documentation

http://displaytag.sourceforge.net/11/
http://glast-ground.slac.stanford.edu/Commons/
http://displaytag.sourceforge.net/11/configuration.html
http://displaytag.sourceforge.net/11/configuration.html
http://aidatld.freehep.org/
http://aidatld.freehep.org/index.jsp
http://java.freehep.org/freehep-webutil/index.html
http://your
http://java.freehep.org/freehep-webutil/index.html
http://confluence.slac.stanford.edu/display/ds/Logging+in+Tomcat

	Starting a Web Application

