
HPS MC Project Documentation
The project provides a set of compiled tools and Python scripts for running MC jobs.hps-mc

Installation

Prerequisites

The following prerequisites are required for running hps-mc:

Maven (3.0 or greater)
gcc (4.8 or greater)
CMake (3.0 or greater)
Python (2.7 or greater)
SLIC
ROOT (optional)

Bundled Dependencies

These dependencies are compiled and installed from source code within the project:

egs5 event generator
MadGraph 4 and MadGraph 5
StdHep library and tools (based on version 5.6.1)

Installed Dependencies

The installation procedure will automatically download and install the following dependencies:

LCIO (2.7.2)
hps-java (HEAD of master)
hps-fieldmaps

Building the Project

Start by checking out the project from github:

git clone https://github.com/jeffersonlab/hps-mc

Now, create a build dir and run CMake:

cd hps-mc; mkdir build; cd build
cmake -DCMAKE_INSTALL_PREFIX=../install ..

This will configure the project to be installed within a directory called install.

Next, run make to build the project:

make -j4 install

Job Environment

A number of environment variables are required for hps-mc to function properly.

These need to be setup by sourcing this script before attempting to run any jobs:

. hps-mc/install/bin/hps-mc-env.sh

The variable will by default point to the copy built during the installation. You can override this by setting it to point to a copy of the jar you HPSJAVA_JAR
want to use instead e.g.

export HPSJAVA_JAR=~/.m2/repository/org/hps/hps-distribution/4.0/hps-distribution-4.0-bin.jar

https://github.com/jeffersonlab/hps-mc
https://confluence.slac.stanford.edu/display/ilc/SLIC
https://root.cern.ch/
https://confluence.slac.stanford.edu/display/hpsg/HPS+Java
https://github.com/JeffersonLab/hps-fieldmaps.git

The SLIC application binary needs to be present in the environment (the SLIC environment is not managed directly by hps-mc), and you can check for this
using:

which slic

If this application is not found then run the to set it up before executing any hps-mc jobs.slic-env.sh

ROOT is only currently used by one job script (). You need to set it up in your environment using the supplied script for this job tuple_job.py thisroot.sh
script to work.

Running Job Scripts

Running individual job scripts requires providing a JSON file with required parameters.

Running a job script looks like:

python job.py params.json

As an example, to generate WAB (Wide Angle Bremsstrahlung) events using MadGraph, these parameters could be used:

{
 "job_num": 1,
 "nevents": 10000,
 "seed": 1234,
 "output_dir": "output",
 "run_params": "1pt05",
 "output_files": {
 "wab_events.lhe.gz": "wab_events_1234.lhe.gz"
 }
}

The specifies the job ID which is useful when running on a batch system.job_num

The parameter specifies how many events to generate.nevents

The gives the random number seed for the job.seed

The is the destination directory for output files (it can be an absolute or relative path).output_dir

The says what beam parameters to use.run_params

The section contains a list of source and destination files. The file on the left side is copied to a file name listed on the right side. (Here the output_files
file will be copied to in the output directory.)wab_events.lhe.gz wab_events_1234.lhe.gz

The names of the output file sources are dependent on the specific job script. The destination can be any valid file name.

If you saved these job parameters as the file you can run the WAB job as follows:job.json

python hps-mc/python/jobs/wab_job.py job.json

This should create the file in the current directory.output/wab_events_1234.lhe.gz

You will probably want to run jobs locally in a scratch directory, as they will tend to write out many files!

Input and Output Files

The job parameters may specify input files if the script uses them and optionally output file locations.

{
 "input_files": {
 "events1.stdhep": "/path/to/events1.stdhep",
 "events2.stdhep": "/path/to/events2.stdhep",
 }
 "output_files": {
 "events1.slcio": "my_events1.slcio",
 "events2.slcio": "my_events2.slcio"
 },
 "output_dir": "/path/to
/outdir"
}

In the above toy example, the files listed in will be copied from the absolute path on the right to the file name on the left (format is input_files "destination":
)."source"

The output files will be copied from the left hand path in the local scratch dir to the file name on the right (format is)."source": "destination"

All output files will be copied to the directory listed under , which can be an absolute or relative path."output_dir"

To keep the names of the output files created by the job, simply list the same file name for the output file entries.

{
 "output_files": {
 "events1.slcio": "events1.slcio",
 "events2.slcio": "events2.slcio"
 }
}

This will make the job copy the file to a file with the same name in the output directory.events1.slcio

Creating Job Workflows

In order to run jobs on a batch system such as LSF or Auger, the job parameters need to be expanded into a workflow, which is a JSON file containing
parameters for all the individual jobs.

For instance, assume you have the following parameters in the file :job.json

{
 "nevents": 10000,
 "seed": 123456,
 "run_params": "1pt05",
 "detector": "HPS-EngRun2015-Nominal-v5-0-fieldmap",
 "run": 5772,
 "readout_steering": "/org/hps/steering/readout/EngineeringRun2015TrigPairs1_Pass2.lcsim",
 "recon_steering": "/org/hps/steering/recon/EngineeringRun2015FullReconMC.lcsim",
 "output_dir": "output",
 "output_files": {
 "tritrig.slcio": "tritrig_0001.slcio"
 }
}

This can be expanded into a workflow using the following command:

hps-mc-workflow -n 1000 -r 1234 -w tritrig hps-mc/python/jobs/tritrig_job.py job.json

Now you should see a local file called which contains information for running 1000 jobs of this type.tritrig.json

The input files for a workflow may be supplied in one of two ways.

A file glob will supply multiple input files to the workflow, one per job.

"input_files" : {
 "beam.stdhep": "/not/a/real/path/beam*.stdhep"
}

Mutiple files can be supplied based on the following syntax.

"input_files" : {
 "beam.stdhep": {
 "/not/a/real/path/beam*.stdhep": 10
 }
}

This will expand into JSON parameters that include 10 files per job in the workflow.

Running Jobs on the Batch System

Automatically submitting jobs to the batch system requires that you have created a workflow from your job parameters (covered in last section).

The following commands use the script to submit jobs to LSF (e.g. SLAC environment).hps-mc-bsub

The command should be used instead when submitting at JLab.hps-mc-jsub

To submit all jobs in a workflow, execute a command similar to the following:

 hps-mc-bsub -l $PWD/logs ./tritrig.json

You can also submit only certain job ids using a syntax like this to list specific job IDs:

hps-mc-bsub -l $PWD/logs ./tritrig.json 1000 2000 [etc.]

Finally, it is possible to submit a range of job IDs:

hps-mc-bsub -l $PWD/logs -r 0:99 ./tritrig.json

This will submit all the jobs IDs from 0 to 99 in the workflow.

Project Structure

The main project has the following directory structure:

Directory Contains Notes

data data files has with beam parametersrun_params.json

generators event generators

generators/egs5 egs5 event generator

generators/madgraph4 MadGraph4 generator

generators/madgraph5 MadGraph5 generator

python Python scripts

python/hpsmc Python framework scripts

python/jobs Python job scripts

python/test Python test scripts

scripts scripts (bash, csh, XML, etc.) Miscellaneous helper scripts and other scripts processed by CMake

scripts/mc_scripts Auger based scripts Backup of JLab Auger MC production scripts (not used by hps-mc)

scripts/run_params scripts for printing run params Backup of JLab scripts (not used by hps-mc)

scripts/MadGraph scripts for printing information from LHE files Backup of JLab scripts (not used by hps-mc)

Additionally, the following directory structure is installed to .CMAKE_INSTALL_PREFIX

Directory Contains Notes

bin executables and scripts

lib program libraries

lib/python python framework and scripts

share project data

share/detectors detector description files (LCDD) used when running SLIC

share/fieldmaps full B-field maps used when running SLIC

The dir contains a large number of scripts and binaries that are created during the build process.bin

File Description Notes

egs5_* egs5 event generation executables

stdhep_* StdHep tools

hps-mc-env.sh Bash setup script

hps-mc-env.csh CSH setup script

lcio_dumpevent utility for dumping LCIO event data

hps-mc-bsub wrapper for submitting LSF jobs

hps-mc-jsub wrapper for submitting Auger jobs

hps-mc-workflow wrapper for creating job workflows

Job Scripts

The project comes with a number of pre-written scripts in the dir for running typical HPS MC jobs.python/jobs

Python script Description Notes

ap_job.py Generate A-primes using MadGraph4

beam_job.py Generate beam backgrounds using egs5

dst_job.py Create output from recon LCIO filesROOT DST

egs5_beam_v3_job.py Generate beam backgrounds using v3 of egs5 generator

egs5_beam_v5_job.py Generate beam backgrounds using v5 of egs5 generator

lcio_concat_job.py Concatenate a number of LCIO files together into a single output file

lcio_count_job.py Count the number of events in an LCIO file and throw an error if there are not enough

tritrig_job.py Generate trident events with trigger cuts

tuple_job.py Create ROOT tuple output from one or more input LCIO recon files

wab_beam_job.py Create wab-beam events from WAB and beam inputs and run in SLIC

wab_beam_tri_job.py Create wab-beam-tri events from wab-beam and tritrig inputs and run in SLIC

wab_job.py Generate WAB events in MadGraph4

Job Scripts

All job scripts follow a specific structure.

https://confluence.slac.stanford.edu/display/hpsg/ROOT+DST+Data+Format

First, necessary dependencies are imported.

from hpsmc.job import Job
from hpsmc.generators import MG4

Next the job is created and the parameters are fetched into a local variable.

job = Job(name="AP job")
job.initialize()
params = job.params

One or more components should be added to the job, for instance an event generator to create some LHE files.

generate A-prime events using Madgraph 4
ap = MG4(name="ap",
 run_card="run_card_"+params.run_params+".dat",
 params={"APMASS": params.apmass},
 outputs=[filename],
 nevents=params.nevents)

Finally, the components should be added to the job and the job should be run.

job.components = [ap]
job.run()

The specific way that input and output files are used depends on the job script.

Typically, input files are read in without alteration, and (some) scripts can process multiple inputs while some cannot (depending on the particularities of
the tools being used).

Output files written to the local "scratch" directory may be based on the name of input files or in some cases will be particular to a given script.

You must know the names of the output files in order to include them as output in your JSON parameters.

	HPS MC Project Documentation

