BT Washington Collaboration Meeting November 2007

This page is gathering any piece of information needed for the Beamtest Status presentation due to the Collaboration Meeting in November 2007 in Washington

Links

Meeting Main Page- Meeting Agenda - All Meetings Reports - BT F2F in Washington - BT EVO Meetings

Template

first attempt: DRAFT

- Instrument performances and features
 - what we understand and what we do not
 - e.g.: PSF, energy resolution, absolute energy scale, CAL xtalk, Tkr alignment...
- MC simulation
 - ° what we understand and what we do not
 - e.g.: beam line, physics list
- Angular resolution (Understood)
- Hadronic physics (Understood)
- Absolute energy scale (Not Understood)
- MC EM Shower profile (Not Understood)
- · Potential impact of CU beamtest systematics upon LAT astrophysical measurements
- How we plan to study this issue

Comment(Elliott): In your talk I generally agree with the points. However, as I mentioned in the meeting on Wednesday, Nov7, the anti-quenching seen for heavy ions in the two GSI beam tests is still a mystery. Also, the comparisons that Ping has been making between dE/dx theory and GEANT (GLEAM) for the mean energy loss (using MC truth) show a sensitivity to the cuts on the muons. There is good agreement for muons between dE/dx theory and GLEAM for the mean energy deposit, but only for no cuts. Just making a mild directional cut on the muon in the CALdirZ paramenter gives a few percent antiquenching like effect of GLEAM MC vs theory. Preliminary results on protons and C using MC (Ping) and data (Yvonne) also show a strong dependence in the mean energy loss on cuts (in this case energy deposit, not loss). These effects seem to be angle dependent. Thus, I believe that we have a lot of work yet to understand these effects that are the basis of our energy calibration method on orbit. I would feel that we are taking a large risk in using the GSI antiquenching results at face value in our calibration proceedures.

List of all analysis topics

Instrument response

- · PSF : from low energy photons to high energy electrons
- Energy : Absolute scale and Energy resolution
- Trigger efficiency
- ACD efficiency : CNO trigger at GSI

Instrumental effects

- Verify Timing in GSI data (Martin)
- CAL
 - pedestal drift
 - FHE/FLE study Autorange (ULD) (Tomi)
 - XTalk measurement and correction (Sasha)
 - alignment with the CU/Tracker (Philippe)
- TKR
 - High rates
 - FIFO analysis (Johan)
 - ° trigger efficiency
 - hot/dead/masked trips
 - Charge Sharing for ions
 - Alignment for the Data
- Csl Light Quenching measurement at GSI (Thierry)
- Csl Scintillation afterglow (Benoit)

MC simulation

- Tagger : Is MC understood ?
- G4 settings
 - Range cuts
 - LowEnergy Physics list for EM showers
 - QGSP_BERT Physics list for hadronic cascades
 - ° Geometry and other tricks
 - GEANT4 vs EGS5 vs Mars15 comparisons (David)

- ACD
 - Min/Max collection efficiency in MC
 - Improved digitization
- Bari digitization algorithm
- CAL cristal segmentation (Philippe)
- TKR Alignment : bug fixed, are we fine ? (leon)

Others

- TKR Hits and Clusters
 - ° For all kind of particles but in particular : EM showers and mips
 - TKR Hit deficit evaluation after data reprocessing (Nicola)
 - There used to be a difference of behaviour between PS and SPS : we know now it was due to using CO2 in the Cerenkov
 - Cluster Size
- CAL EM Shower
 - Longitudinal and Transverse shower profiles
 - Number of logs hit
 - gaps scan
 - Cerenkov pressure scan and scaled energy (Philippe)
- Tagger: PSF measurement with smaller error bars ?
- ACD : backsplash measurement (Luis)
- Many pion studies (Berrie)
- Beam spot: Tuning, Gaps and Fiducial cuts
- Very high level reconstruction variables : Tkr1CoreHC, CalTransRms...

Background study runs

- Positron annihilation in MMS
- Gamma-background produced in MMS by protons (Alex)
- Albedo runs

Other topics/ideas/comments

things we did

- Selection of beam test-like events from orbits data
- Agreement Matrix and BtSysTest
- Material Audit : TKR and CAL, possible improvements

Some comments (luca)

Talk should have a list of

- understood (i.e. reproduced)
 - angular resolution (tagged+FB+electrons)
 - energy resolution (spread and tails, not average value)
 - o backsplash: are we happy with current strong cuts to reproduce that in MC?
 - trigger efficiency (do we have CAL-LE and CAL-HE plots similar to what nicola made for TKR? CNO efficiency? important for effective area)
 - ° general g4 behaviour and implementation (comparison with other simulators, beam line simulation)
 - CAL calibration (xtalk, non-linearities) BUT how is SPS cross-calibration compatible with the GSI calibration and how do we calibrate in flight?
 - Material audit (TKR+CAL): how much more X0 do we expect from modifications to CAL geometry?
 - ° effects of material along beam line, i.e. no coherent improvement on both TKR and CAL discrepancies
 - effects of LE physics list and range cuts
 - optimized (but not perfect) hadronic physics list
- NOT understood
 - hit deficit in MC (and clusters)
 - ° log deficit in MC and overall raw energy scale
- plans to assess
 - effects of discrepancies on background rejection (data-like simulations, we MUST devise and show a plan here, we have been talking about this for too long now)
 - o how do we play with shower shape in g4?