
Remote Linux Client Howto
On this page we provide useful information for accessing build systems and other tools from an off-site/remote linux machine.

Useful SSH Tricks

Use ~/.ssh/config for your configurations!

Use Wildcards and Nicknames

you can apply the same config settings to multiple hosts, e.g:

Host ioc-* cpu-*
User laci
SendEnv TERM=xterm
HostName %h.slac.stanford.edu
ProxyJump <gateway>
StrictHostKeyChecking no
UserKnownHostsFile /dev/null

How to Avoid " "WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!

If you contact a server that is frequently rebooted and has no permanent storage (embedded system) then it might recreated a new host key each time it
boots. Avoid the annoying warning using for as shown above./dev/null UserKnownHostsFile

Connecting via "Multiple Hops"

Often a ssh server is not directly reachable from the internet. In this case you can use a ProxyCommand - which is an arbitrary shell command that
connects its stdio to the ssh server. In particular, you can use an ssh connection to a host which does have a connection (directly or indirectly) to the
targeted server as a proxy. See above for an example. Note that this can be applied recursively, i.e., if the 'gateway' in the previous example is not directly
reachable from the internet but 'firewall' is then you can use

Host gateway
User myself
ProxyCommand ssh -X firewall /usr/bin/nc %h %p

However, as Faisal has pointed out - in the most common use-case the `ProxyJump` directive is more convenient:

Host gateway
User myself
ProxyJump firewall

Now when you say

bash$ ssh cpu-b12-xyz

then ssh will transparently set up the multi-hop connection. Note that others options can be passed and work as expected, i.e., you can set up port
forwarding to the target machine, e.g.,

bash$ ssh cpu-b12-xyz -L8000:localhost:9000

sets up an encrypted port forward from the external machine (where ssh runs), port 8000 to port 9000 on cpu-b12-xyz.

Use '-t'

When you run a remote command via ssh as in

bash$ ssh cpu-b12-xyz lengthy_command

then it is important to know that ' ' is associated with any (remote!) terminal. This means that when you kill on your local lengthy_command not ssh
machine (Ctrl-C) then the remote command will keep executing (the remote command is not a child of the local ' ' and cannot be notified of its death). ssh
The '-t' option forces the remote ssh server to allocate a pseudo-terminal and associates the process with that terminal and this will lengthy_command
allow propagation of signals:

bash$ ssh -tt cpu-b12-xyz lengthy_command

If you kill this ssh on your local machine then it will cause the to receive a signal (via its controlling terminal) and terminate as well. lengthy_command
Multiple 't's ensure a remote terminal is allocated even if there is no local terminal (e.g., if the ssh command is called from a daemonized script).

screen is Your Friend!

When you run an interactive session from remote then this often carries a lot of context information (environment, running processes etc.). It can be very
painful if you get disconnected and as a consequence lose all of this context and have long-running build processes killed. Use the ' ' utility. If you screen
work on AFS then also keeps your tokens alive for you (until they expire, of course) - provided that you run a screen pagsh:

bash$ screen pagsh

You start authenticating yourself () and then go about your business. You can at any time disconnect from the screen (which continues kinit -f; aklog
running all of its sub-processes and keeps terminal history etc) by hitting " . You can then safely log-out and when you come back resume <CTRL>-A D"
your screen session (hopefully that vivado build has completed in the mean time)

bash$ screen -r

If there are multiple screen sessions running then you may have to specify which one to resume. The above also works if you have been interrupted (e.g.,
by losing connectivity) but if screen things the last connection is still alive then you might have to reattach forcefully

bash$ screen -Dr

Remote GUI Access

While you can run X11 over ssh it is frustratingly slow if your connection is not super-fast. VNC is a much better solution (for use with a windows client see
). Plus, if you run your VNC server inside a screen/pagsh then you can disconnect and reconnect to your GUI without killing the GUI application . Of here

course, the VNC connection can be tunneled with ssh. The TightVNC which is available under linux can be instructed to do so.vncviewer

Inside Machine

On the 'inside' you typically start a vncserver inside a screen/pagsh session (see above). Use a screen geometry that fits your remote viewer (client)

bash$ vncserver -geometry 1920x1200

New 'somemachine:1 (strauman)' desktop is somemachine:1

Once the server is up it prints its 'X11 display' information (e.g., which you use to set up the environment variable.DISPLAY

bash$ export DISPLAY=:1

After this step you can start GUI applications, e.g., (ruckus)

bash$ make gui

Remote Client

On linux you can conveniently use the 'via' option to connect via ssh (this can be a multihop nickname as described above).

bash$ vncviewer -via somemachine :1

https://docs.google.com/presentation/d/1_m0Q2BWLfx5x5jEvnI03-rvDlzxKrwj-AOXqEevz30Q/edit?usp=sharing

1.

2.

3.

4.
5.

6.
7.

where ':1' is the X11 display matching the info given by the server (note the blank space between the machine name which is an argument to -via and the
display argument). If – for some reason – you use a different kind of tunnel or connection then the viewer might believe it is directly connected to the
server. In this case you probably want to explicitly specify an efficient encoding - otherwise your experience will be frustratingly slow...

Remote Access to JTAG / USB

Access to JTAG is commonly required for reprogramming the FPGA (some platforms) and for access to embedded ILA (logic-analyzer) cores.

USB over IPs

If the system is equipped with a USB<->JTAG bridge and the vivado hw_server is not an option (e.g., because no linux x86 PC is in proximity) then linux' us
 feature is an option. This approach requires two linux computers. A remote system with physical access to the USB port (this can be e.g., a small bip

portable device such as a raspberry) and a host with access to the hw_server. These two systems must be connected via TCP (but ssh tunneling etc. is
possible).

usbip implements a virtual USB device on the local host where the remote device seems to be locally attached, i.e., it shows up on the USB bus of the
local host where hw_server can find it. In a nutshell:

On the remote machine: usbip bind -b id
On the local machine: usbip -r <remote_ip> -b <remote_id>

You need root access on both machines for these operations. It is also noteworthy that if the remote USB device is disconnected (e.g., because of a FPGA
power-cycle) it is necessary to recreate the virtual USB device on the local host. Consult the documentation for details.usbip

XVC

It is also possible to drive JTAG with a firmware core and use the Xilinx protocol to remotely access JTAG. The SLAC surf library provides the XVC necess
 (a firmware block and a software XVC server which must be run on a linux box with connectivity to the firmware). This is a purely ary components

networked solution and no hardware JTAG nor USB are required.

Note: when operating over a slow connection then I get better response when I start a Xilinx hw_server on some machine that is close to the xvcSrv
(rather than tunneling XVC from the remote machine):

Start on a machine with fast connectivity to the FPGAxvcSrv

 xvcSrv -t <target_ip>[:<udp_port>]

A pre-compiled binary is installed here

 /afs/slac/g/reseng/xvcSrv/bin/<architecture>/
or here
 /afs/slac/g/lcls/package/xvcSrv/<architecture>/

Start on the same or a close-by machine (no special arguments necessary); if you run Vivado on-site then vivado takes care of this hw_server
step and you may skip step 3.
From remote (e.g., laptop) you might have to use an tunnel to get to the . You can in fact use to directly launch the server ssh hw_server ssh
and tunnel the connection (assuming is on the PATH):hw_server

 ssh -L 3121:localhost:3121 gateway_machine hw_server

On the remote machine launch Vivado and connect to the default target (since the tunnel was opened on local port 3121 Vivado will find it)ssh
In the Vivado hardware manager connect to the hw target:

 % open_hw_target -xvc_url <machine_where_xvcSrv_runs>:2542

That's it. Vivado should find the new target. You will need to load the debug probe (.ltx) file and possibly "refresh" the target.
The initialization then takes quite a while (from my home it takes ~30s for the GUI to populate in the hardware manager) but further interaction
(including display of waveforms) is acceptable.

https://www.xilinx.com/products/intellectual-property/xvc.html
https://github.com/slaclab/surf/tree/strauman_axis-jtag/protocols/jtag
https://github.com/slaclab/surf/tree/strauman_axis-jtag/protocols/jtag

	Remote Linux Client Howto

