
Detector Conditions

Overview
Database Connection

Command Line Options
Using the SLAC Database

Administration
Creating a Conditions Database Backup
Loading a Conditions Database Backup
Replicating the Database to SLAC

Configuring Detector Conditions for a Job
Command Line Setup
Java Initialization
Additional HPS Features
Accessing Conditions from a Driver

Conditions Types
Conditions Type Table

Database Schema
Conditions Table

Defining Conditions Classes

Overview

HPS uses a conditions database which is accessible through the . The conditions framework provides classes that read DatabaseConditionsManager
information from the database and return them as lists of typed Java objects with methods for accessing each data field. Users can access these objects
to configure their jobs, typically in the method of their Driver classes. The conditions system is setup by specifying the unique detectorChanged()
name of a detector description and the run number. Typically, this is done by reading this information automatically from the event headers in an LCIO file.

Database Connection

Command Line Options

The parameters for connecting to the database can be specified from the command line as global Java properties.

The default connection information for reading from the database corresponds to the following command line options:

Conditions Database Command Line Options

java -Dorg.hps.conditions.url=jdbc:mysql://hpsdb.jlab.org:3306/hps_conditions \
 -Dorg.hps.conditions.user=hpsuser \
 -Dorg.hps.conditions.password=darkphoton [...]

These options should always be provided immediately after the command as they are global Java properties rather than command line options java
provided to a specific application or program within hps-java.

The default database connection uses a read-only replica of the primary MySQL conditions database at Jefferson Lab. Therefore, when connecting from a
computer which is outside of the domain, you will be able to make any changes to this database. If you need to insert records into the jlab.org not
database, i.e. for new calibrations, then it must be done behind the JLab firewall, and you must provide valid credentials that allow writing to the database
(they are not provided here!).

Using the SLAC Database

The following connection properties can be used to connect to the SLAC conditions database:

SLAC Conditions Database

java -Dorg.hps.conditions.url=jdbc:mysql://mysql-node03.slac.stanford.edu:3306/rd_hps_cond \
 -Dorg.hps.conditions.user=rd_hps_cond_ro \
 -Dorg.hps.conditions.password=2jumpinphotons. [...]

This database is updated only periodically, not automatically, so you may need to check if it is up-to-date before using it for your jobs.

Using a Local Conditions Database

Local jobs can be run without an internet connection using the built-in support for SQLite.

A db file compatible with sqlite3 may be obtained by using the following commands:

http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/database/DatabaseConditionsManager.html
http://jlab.org

Downloading SQLite Database

https://github.com/JeffersonLab/hps-conditions-backup/raw/master/hps_conditions.db.tar.gz
tar -zxvf hps_conditions.db.tar.gz

This file may not be up to date with the current master in the JLab conditions database!

The local db file can be used by using this option when running Java:

Connecting to Local Conditions Database

java -Dorg.hps.conditions.url=jdbc:sqlite:hps_conditions.db [...]

No username or password is required when connecting locally in this way.

Creating a Local SQLite Database

In order to create a local SQLite database, you will need to create a snapshot of the MySQL database and then convert it to a SQLite db file.

This converter script can be used to produce the db file.

It can be downloaded using these commands:

MySQL Conversion Script

 wget https://raw.githubusercontent.com/dumblob/mysql2sqlite/master/mysql2sqlite
 chmod +x mysql2sqlite

You can create a dump of the current conditions database using this command:

Creating a Database Dump

mysqldump --skip-extended-insert --compact -u hpsuser --password=darkphoton -h hpsdb.jlab.org --extended-
insert=false --lock-tables=false hps_conditions > hps_conditions.mysql

Now, you can load the database dump into sqlite3 as follows:

Loading Dump into SQLite

 mysql2sqlite hps_conditions.mysql | sqlite3 hps_conditions.db

You should now have an up to date copy of the master conditions database locally that can be specified on the command line.

Administration

Creating a Conditions Database Backup

The conditions database can be backed up using a command similar to the following:

Creating a Backup

mysqldump -h hpsdb.jlab.org -u$USER -p$PASSWORD hps_conditions &> hps_conditions.sql

The file has to be on a disk that is local to the machine. If not then an error may occur: "Caused by: org.sqlite.hps_conditions.db
SQLiteException: [SQLITE_IOERR_LOCK] I/O error in the advisory file locking logic (disk I/O error)"

Alternatively, if you have systems privileges (i.e. root) you can mount your NFS drive with the option.local_lock=all

https://github.com/dumblob/mysql2sqlite

... where is replaced by your account name with the proper permissions and with your password.$USER $PASSWORD

Loading a Conditions Database Backup

To load the database from a backup, the following command would be used.

Loading a Backup

mysql -h hpsdb.jlab.org -u $USER -p$PASSWORD hps_conditions < hps_conditions.sql

The above command is for informational purposes only. Fully restoring the database from a backup would need to go through a JLAB CCPR, as the
accounts we have access to do not have all the proper permissions for doing this.

Replicating the Database to SLAC

This is a general outline of dumping the database and replicating it to the SLAC MySQL database, which is used for releases, as connecting from SLAC to
the JLab database is not reliable enough.

First, from a JLab machine such as , a SQL dump should be created that includes all required statements for dropping tables (the default ifarm
configuration of should be fine).mysqldump

mysqldump -h hpsdb.jlab.org -u$USER -p$PASSWORD --disable-lock-tables hps_conditions &> hps_conditions_for_slac.
sql

This file should then be copied over to SLAC.

scp hps_conditions_for_slac.sql $USER@rhel6-64.slac.stanford.edu:/nfs/slac/g/hps/someDir

Finally, the SQL dump should be loaded into the SLAC database using a command similar to the following.

mysql -D rd_hps_cond -h mysql-node03.slac.stanford.edu -P 3306 -u $USER -p $PASSWORD < hps_conditions_for_slac.
sql

The command may take awhile to execute. If it is successful, the SLAC database should contain an exact replica of the primary conditions database from
JLab.

Configuring Detector Conditions for a Job

Command Line Setup

The conditions configuration is typically performed using arguments to command line programs, or the system is setup automatically from information in
the LCIO or EVIO events.

The detector name and run number can be provided explicitly to the job manager to override these settings.

java -jar hps-distribution-bin.jar -d detector_name -R 5772 [args]

Configuration of the EvioToLcio utility is done similarly.

java -cp hps-distribution-bin.jar org.hps.evio.EvioToLcio -d detector_name -R 5772 [args]

Providing conditions in this way will cause the manager to automatically "freeze" itself after initialization so that subsequent run numbers and detector
header information from the input files will be ignored.

Additionally, tags can be specified to filter out the available conditions records in the job, which is described in the documentation.Detector Conditions Tags

Java Initialization

The global instance of the conditions manager can be accessed using the following command:

https://confluence.slac.stanford.edu/display/hpsg/Detector+Conditions+Tags

final DatabaseConditionsManager mgr = DatabaseConditionsManager.getInstance();

If an instance has not already been instantiated, one will be created.

The conditions system is initialized using the which takes the name of a detector and a run number.ConditionsManager's setDetector method

DatabaseConditionsManager.getInstance().setDetector("detector_name", 5772);

In some special cases, the conditions system may need to be completely reset by creating and installing a new instance of the manager.

This can be done by calling a special static method on the manager.

Resetting the Conditions Manager

DatabaseConditionsManager.reset();

You should absolutely do this under normal circumstances such as within your Driver code. The method is public only so that this can be done if not
necessary.

Additional HPS Features

HPS adds several features to the lcsim conditions system.

You can add one or more tags for filtering the conditions records. Only those records belonging to the tag will be accessible.

DatabaseConditionsManager.getInstance().addTag("pass0");

The conditions system can be "frozen" after it is initialized, meaning that subsequent calls to set a new detector and run number will be completely ignored.

DatabaseConditionsManager.getInstance().freeze();

This is useful to force the system to load a specific configuration by run number if the actual event data does not have the same run number (or for run 0
events from simulation).

Accessing Conditions from a Driver

Conditions information is accessed in the beginning of the job through the .Driver class's detectorChanged method

public void detectorChanged(Detector detector) {
 DatabaseConditionsManager conditionsManager = DatabaseConditionsManager.getInstance();
 EcalChannelCollection channels =
 conditionsManager.getCachedConditions(EcalChannelCollection.class, "ecal_channels").getCachedData();
 System.out.println("got " + channels.size() + " ECal channels");
}

All conditions collections required by a Driver should be loaded in this method to avoid incurring a performance overhead by reading the conditions on
every event.

You can also access collections not associated to the current run by providing the collection ID.

DatabaseConditionsManager conditionsManager = DatabaseConditionsManager.getInstance();
EcalGainCollection gains = new EcalGainCollection();
gains.setConnection(conditionsManager.getConnection());
gains.setTableMetaData(conditionsManager.findTableMetaData("ecal_gains");
gains.select(1234); /* where number is a valid collection ID in the database */

This can be used to retrieve reference data that is not accessible in the conditions for the run.

Conditions Types

http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/database/DatabaseConditionsManager.html#setDetector(java.lang.String,%20int)
http://www.lcsim.org/sites/lcsim/apidocs/org/lcsim/util/Driver.html#detectorChanged(org.lcsim.geometry.Detector)

Conditions Type Table

Java Object Class Java Collection Class Default Database Table Description

BeamEnergy BeamEnergyCollection beam_energies nominal beam energies

EcalBadChannel EcalBadChannelCollection ecal_bad_channels ECal bad channel list

EcalCalibration EcalCalibrationCollection ecal_calibrations per channel ECal pedestals and noise

EcalChannel EcalChannelCollection ecal_channels ECal channel information including map of DAQ to physical channels

EcalGain EcalGainCollection ecal_gains per channel ECal gains

EcalLed EcalLedCollection ecal_leds per crystal LED configuration

EcalLedCalibration EcalLedCalibrationCollection ecal_led_calibrations per crystal LED calibration information (from calibration run)

EcalPulseWidth EcalPulseWidthCollection ecal_pulse_widths ECal signal pulse width (currently unused in recon)

EcalTimeShift EcalTimeShiftCollection ecal_time_shifts ECal signal time shift (currently unused in recon)

SvtAlignmentConstant SvtAlignmentConstantCollection svt_alignment_constants SVT alignment constants in formatMillepede

may be disabled using -DdisableSvtAlignmentConstants

SvtBadChannel SvtBadChannelCollection svt_bad_channels SVT bad channel list

SvtBiasConstant SvtBiasConstantCollection svt_bias_constants SVT bias setting for a time range

SvtCalibration SvtCalibrationCollection svt_calibrations per channel SVT noise and pedestal measurements

SvtChannel SvtChannelCollection svt_channels SVT channel information

SvtDaqMapping SvtDaqMappingCollection svt_daq_map SVT mapping of DAQ to physical channels

SvtGain SvtGainCollection svt_gains per channel SVT gains

SvtMotorPosition SvtMotorPositionCollection svt_motor_positions SVT motor position in mm

SvtShapeFitParameters SvtShapeFitParametersCollection svt_shape_fit_parameters SVT parameters for the signal fit

SvtT0Shift SvtT0ShiftCollection svt_t0_shifts SVT T0 (first sample) shifts

SvtTimingConstants SvtTimingConstantsCollection svt_timing_constants SVT timing configuration constants including offset and phase

TestRunSvtChannel TestRunSvtChannelCollection test_run_svt_channels test run SVT channel information

TestRunSvtDaqMapping TestRunSvtDaqMappingCollection test_run_svt_daq_map test run SVT DAQ mapping

TestRunSvtT0Shift TestRunSvtT0ShiftCollection test_run_svt_t0_shifts test run SVT T0 shift

Database Schema

Data Tables

Each type of condition has an associated database table which contains records with conditions information plus a few additional pieces of
information. These tables are modeled by the .ConditionsObjectCollection class

For instance, this is the table schema for the BeamEnergy condition.

mysql> describe beam_energies;
+---------------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
collection_id	int(11)	NO		NULL	
beam_energy	double	NO		NULL	
+---------------+---------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

The is the row ID used to uniquely identify the record. The associates a set of records together into a collection. Every data table has id collection_id
these two fields plus additional columns with the conditions data.

Conditions Table

The conditions table associates collections with a run number range.

http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/beam/BeamEnergy.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/beam/BeamEnergy.BeamEnergyCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalBadChannel.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalBadChannel.EcalBadChannelCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalCalibration.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalCalibration.EcalCalibrationCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalChannel.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalChannel.EcalChannelCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalGain.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalGain.EcalGainCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalLed.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalLed.EcalLedCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalLedCalibration.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalLedCalibration.EcalLedCalibrationCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalPulseWidth.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalPulseWidth.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalTimeShift.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/ecal/EcalTimeShift.EcalTimeShiftCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtAlignmentConstant.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtAlignmentConstant.SvtAlignmentConstantCollection.html
http://www.desy.de/~kleinwrt/MP2/doc/html/index.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtBadChannel.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtBadChannel.SvtBadChannelCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtBiasConstant.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtBiasConstant.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtCalibration.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtCalibration.SvtCalibrationCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtChannel.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtChannel.SvtChannelCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtDaqMapping.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtDaqMapping.SvtDaqMappingCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtGain.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtGain.SvtGainCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtMotorPosition.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtMotorPosition.SvtMotorPositionCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtShapeFitParameters.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtShapeFitParameters.SvtShapeFitParametersCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtT0Shift.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtT0Shift.SvtT0ShiftCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtTimingConstants.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/SvtTimingConstants.SvtTimingConstantsCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/TestRunSvtChannel.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/TestRunSvtChannel.TestRunSvtChannelCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/TestRunSvtDaqMapping.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/TestRunSvtDaqMapping.TestRunSvtDaqMappingCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/TestRunSvtT0Shift.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/svt/TestRunSvtT0Shift.TestRunSvtT0ShiftCollection.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/api/ConditionsObjectCollection.html

mysql> describe conditions;
+---------------+--------------+------+-----+-------------------+-----------------------------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+-------------------+-----------------------------+
id	int(11)	NO	PRI	NULL	auto_increment
run_start	int(11)	NO		NULL	
run_end	int(11)	NO		NULL	
updated	timestamp	NO		CURRENT_TIMESTAMP	on update CURRENT_TIMESTAMP
created	datetime	NO		NULL	
tag	varchar(256)	YES		NULL	
created_by	varchar(255)	YES		NULL	
notes	longtext	YES		NULL	
name	varchar(40)	NO		NULL	
table_name	varchar(50)	NO		NULL	
collection_id	int(11)	NO		NULL	
+---------------+--------------+------+-----+-------------------+-----------------------------+
11 rows in set (0.01 sec)

The and give a range of run numbers for which the conditions are valid. These can be the same number to specify a single run.run_start run_end

The gives the name of the table containing the conditions data.table_name

The gives the collection ID to load from the table.collection_id

This table is modeled by the class which is accessible via the DatabaseConditionsManager.ConditionsRecord

When multiple collections of the same type are valid for the current run, the most recently added one will be used by default.

Defining Conditions Classes

New conditions classes should follow a basic template which provides information about its associated database tables and columns.

For example, here is the definition for the BeamEnergy condition.

@Table(names = {"beam_energies"})
public final class BeamEnergy extends BaseConditionsObject {

 public static final class BeamEnergyCollection extends BaseConditionsObjectCollection<BeamEnergy> {
 }

 @Field(names = {"beam_energy"})
 public Double getBeamEnergy() {
 return this.getFieldValue("beam_energy");
 }
}

The annotation on the class maps the class to its possible database tables. Typically, this is a single value.@Table

The annotation is applied to a method which should be mapped to a column in the database. The method must be public.@Field

An optional annotation can be used to override the default conversion from the database.@Converter

@Converter(converter = ConditionsRecordConverter.class)

This is only used in a few special cases.

http://www.lcsim.org/sites/hps/apidocs/org/hps/conditions/api/ConditionsRecord.html

	Detector Conditions

