
Analysis Group DDL Managment

Test Release
One Time Work

Make a conda based test release
Activate it
Add Packages
pdsdata note
Build, make sure it works
More Packages?

Flow
Clean
New Tags
Create Generated Code

High Priority Packages
Low Priority: psana_test
Low Priority: Hdf5
Notes

Build and Test
Code Links

The DAQ will produce a new pdsdata and psddldata per the instructions here: Building the psalg and pdsdata packages

Test Release
We need to setup a test release for DDL development.

One Time Work

Make a conda based test release

source conda_setup
condarel --newrel --names types-conda

Activate it

cd types-conda
source conda_setup

you should get the *tr* in your prompt

Add Packages

Right now your types-conda is against ana-current, ana-1.2.7 for me. Packages we expect to modify, we'll check out against master/head. Otherwise we'll
let condarel get the package tag for our release.

The next time we update a DDL type and we re-use this release, we may have to update tags.

https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=221054689

condarel --addpkg --name pdsdata --tag HEAD
condarel --addpkg --name psddldata --tag HEAD

we need this proxy to use pdsdata, shouldn't need to get it from master
condarel --addpkg --name pdsdata_ext

we'll need these proxy packages for compiling the Translator
condarel --addpkg --name hdf5
condarel --addpkg --name openmpi

we'll need this proxy package to compile psddl_python
condarel --addpkg --name python

These are the packages that we will generate new code for, so we'll get them from head

these are essential:
condarel --addpkg --name psddl_psana --tag HEAD
condarel --addpkg --name psddl_pds2psana --tag HEAD
condarel --addpkg --name psddl_python --tag HEAD

psana_test is part of the testing system, and useful for dummping xtc files, but could be deprecated,
probably no user uses it
condarel --addpkg --name psana_test --tag HEAD

this if for the Translator
condarel --addpkg --name psddl_hdf2psana --tag HEAD
condarel --addpkg --name Translator --tag HEAD

pdsdata note

The code for pdsdata is checked out into the extpkgs subdir, if you need to modify or run svn log or things like that, cd into the appropriate directory

Build, make sure it works

scons

or better,

scons test

More Packages?

Above should be the essential, but it might be a good idea to include more packages, for instance all the packages that depend on these packages, and
psana. Below is the list of all the packages I kept in my RPM based types release:

pslogin7d: /reg/neh/home4/davidsch/rel/types $ relinfo
Pkg/Rel TEST BASE(ana-0.19.25)
CSPadPixCoords V00-03-30 V00-03-30 V00-03-30
CalibManager V00-02-26 V00-02-26 V00-02-26
CythonUtils V00-00-01 V00-00-01 V00-00-01
Detector V00-04-13 V00-04-13 V00-04-13
H5DataTypes V00-05-14 V00-05-14 V00-05-14
ImgAlgos V00-04-37 V00-04-37 V00-04-37
LogBook V01-01-05 V01-01-05 V01-01-05
LusiTime V00-01-08 V00-01-08 V00-01-08
MsgLogger V00-01-09 V00-01-09 V00-01-09
PSCalib V00-03-20 V00-03-20 V00-03-20
PSEnv V00-14-01 V00-14-01 V00-14-01
PSEvt V00-08-05 V00-08-05 V00-08-05
PSHdf5Input V00-04-02 V00-04-02 V00-04-02
PSShmemInput V00-01-02 V00-01-02 V00-01-02
PSXtcInput V00-15-22 V00-15-22 V00-15-22
PSXtcMPInput V00-00-02 V00-00-02 V00-00-02
ParCorAna V00-00-35 V00-00-35 V00-00-35
TimeTool V00-03-11 V00-03-11 V00-03-11
Translator HEAD HEAD V00-02-61
XtcInput V00-10-28 V00-10-28 V00-10-28
boost V00-03-00 V00-03-00 V00-03-00
cspad_mod V00-07-00 V00-07-00 V00-07-00
doctools V00-00-22 V00-00-22 V00-00-22
h5py V00-06-01 V00-06-01 V00-06-01
hdf5 V00-05-01 V00-05-01 V00-05-01
hdf5pp V00-07-09 V00-07-09 V00-07-09
hypre V00-00-01 V00-00-01 V00-00-01
mpi4py V00-01-01 V00-01-01 V00-01-01
mypkg - -
mysql V00-02-01 V00-02-01 V00-02-01
openmpi V00-02-00 V00-02-00 V00-02-00
pdsdata HEAD HEAD V01-00-51
psalg V00-00-07 V00-00-07 V00-00-07
psana V00-13-24 V00-13-24 V00-13-24
psana_examples V00-05-03 V00-05-03 V00-05-03
psana_python V00-15-21 V00-15-21 V00-15-21
psana_test HEAD HEAD V00-08-57
psddl V00-13-25 V00-13-25 V00-13-25
psddl_hdf2psana HEAD HEAD V00-09-40
psddl_pds2psana HEAD HEAD V00-09-36
psddl_psana HEAD HEAD V00-06-31
psddl_python HEAD HEAD V00-08-30
psddldata V01-00-53 V01-00-53 V01-00-53
psocake V00-01-52 V00-01-52 V00-01-52
pyana V00-03-05 V00-03-05 V00-03-05
pyana_examples V00-01-02 V00-01-02 V00-01-02
pyimgalgos V00-00-74 V00-00-74 V00-00-74
pypsalg V00-01-13 V00-01-13 V00-01-13
pytools V00-00-02 V00-00-02 V00-00-02
tables V00-06-01 V00-06-01 V00-06-01

one can also use

scons package-revese-dependencies

to identify what packages depend on the psddl packages, including those would let you develop changes that brake binary compatibility.

Flow

Clean

We're going to want to rebuild everyting against the new tags, I suggest, from your types-conda directory

rm -rf build arch include data

you can also do

scons clean

but not as reliable

New Tags

get the new tags from the DAQ for pdsdata and psddldata, I would use git checkout for the later so you still have your whole git checkout (instead of a
headless branch)

this from the test release dir, changes code in the extpkgs/pdsdata subdir:
condarel --addpkg --name pdsdata --tag V08-07-00
cd psddldata
git pull
say you want this tag:
git checkout V01-00-53

The DAQ will have checked in a pdsdata with code generated from the new DDL type in psddldata. Now we will generate our own code from this new type
in psddldata.

Create Generated Code

High Priority Packages

To create generated code, we will run the driver scripts for each of the packages. That is we will run, in this order (but the order doesn't really matter)

ddl_psana # build abstract C++ interfaces to new DDL type in psddl_psana package
ddl_pds2psana # build C++ derived interface that uses pdsdata to understand xtc files, in psddl_pds2psana
package
ddl_python # build python extension, in psddl_python package

These are the essential ones for python psana users.

It can be useful to go into the three psddl_* packages mentioned and do git status to see differences.

You could run scons now and try out psana and see if you see the new DDL type. If you have a test xtc file, you could take a look at it (it is great if you get
a test xtc file before running live in experiments)

Low Priority: psana_test

Next, or during, also run this code generator:

ddl_psana_test # extend the psana_test.dump psana module to understand the new datatype, now you can get a
text dump of this new DDL type

Low Priority: Hdf5

Before generating code for the Translator, you usually need to write a litttle DDL. This DDL describes how to write the new DDL type into Hdf5 - basically
how many datasets do we split the data into, and how do we group it, do we use compounds, etc. Best to look at examples of past to the commits
psddl_hdf2psana package. For example, here is what was added for the , based on this juafrau detctor DDL

One is using the DDL to write a schema. Schema's get there own versions. For example, today, we may write DDL type V3 with schema 1, but if one fines
one must change the names of the datasets or something like that, you can introduce a schema 2 without changing the DDL.

ddl_hdf2psana # C++ classes to read write details of DDL types to/from Hdf5 per the schemas in the
psddl_hdf2psana/data directory.
ddl_Translator # C++ for the Translator, uses ddl_hdf2psana for low level type I/O

Notes

We no longer use/maintain ddl_psanadoc.

https://github.com/lcls-psana/psddl_hdf2psana/commits/master
https://github.com/lcls-psana/psddl_hdf2psana/commit/3a593b7b1da983ca0dff66a1b9af8fa205f673ea
https://github.com/lcls-psana/psddldata/blob/master/data/jungfrau.ddl

All the ddl_* scripts call the underlying psddlc tool in the psddl package. They are all pythyon scripts that take -h, for instance they have a verbose switch,
and for debugging, you can run them on one file at a time.

When you run them, you get some messages you can ignore, for instance:

(ana-1.2.7) *tr* psanaphi107: ~/rel/types-conda $ ddl_psana
Warning: <Package(Epix)> type=ElementV2, DEVEL type=ConfigSV1 in config list is being omitted
Warning: <Package(Epix)> type=ElementV3, DEVEL type=ConfigSV1 in config list is being omitted

At some point we decided to introduce a DEVEL tag. The idea being that the DAQ would mark volatile types in development as DEVEL which we would
not generate interfaces for. This way users might not accidentally use old devel code for new production types (once the type was stable). It does create
issues, this is just warning you that a DEVEL config type is listed in a production data type, but we're ignoring it (maybe this message should be removed,
as it is the obvious thing to do).

(ana-1.2.7) *tr* psanaphi107: ~/rel/types-conda $ ddl_pds2psana
WARNING No suitable constructor defined for Acqiris::TdcDataV1Common
WARNING No suitable constructor defined for Acqiris::TdcDataV1Channel
WARNING No suitable constructor defined for Acqiris::TdcDataV1Marker

Those have been there forever, no worries.

DdlPythonInterfaces - info: BldDataFEEGasDetEnergy is a type family including
 names ending with and without the version string.
 Not generating the unversioned object containing the versioned types.

In our psana package, you'll see things like

psana.BldEBeam
psana.BldEBeamV1
psana.BldEBeamV2

where BldEBeam is a list of the other types. It is a way to programmatically figure out what types are in a release. However for an old type like FEEGas -
they didn't start with a Vx, so we can't make this list. Just a warning as we see there is more than on version of the type, and we'd like to make a list but
can't.

(ana-1.2.7) *tr* psanaphi107: ~/rel/types-conda $ ddl_psana_test
notProcessed 111: uint8_t[1] <- Generic1D.DataV0.data_u8([('channel', <Type(uint32_t)>)]) value_type=True
notProcessed 110: double <- OceanOptics.DataV1.nonlinerCorrected([('iPixel', <Type(uint32_t)>)])
value_type=True
...

I never implemented the code to dump more complicated methods of the DDL types - for instance nonlinearCorrected is a function that takes an index,
we'd have to call it repeatedly.

Build and Test

now the fun:

scons test

good luck!

Code Links
https://github.com/lcls-psana/psddl_hdf2psana/commits

https://github.com/lcls-psana/psddldata/commits

https://github.com/lcls-psana/psddl/commits

https://github.com/lcls-psana/psddl_psana/commits

https://github.com/lcls-psana/psddl_pds2psana/commits

https://github.com/lcls-psana/psddl_hdf2psana/commits
https://github.com/lcls-psana/psddldata/commits
https://github.com/lcls-psana/psddl/commits
https://github.com/lcls-psana/psddl_psana/commits
https://github.com/lcls-psana/psddl_pds2psana/commits

https://github.com/lcls-psana/psddl_python/commits

https://github.com/lcls-psana/psana_test/commits

https://github.com/lcls-psana/psddl_python/commits
https://github.com/lcls-psana/psana_test/commits

	Analysis Group DDL Managment

