
Psana Developer Documentation
Content

Content
Introduction
Creating Standard Python Package
Old to New Conda Command Table
Missing Functionality
Converting a Release
References

Introduction
This page covers documentation about the conda release and build system relevant for psana developers. This documentation is also for LCLS users that
want to migrate their test releases based on psana C++ modules and the scons build system to the conda environments. This page is up to SConsTools
date with our conversion to github, for the older deprecated svn page, see .SVN based Psana Developer Documentation

Creating Standard Python Package
below is information on using SConsTools with conda. However we can now develop standard python packages, please see this github issue for details: htt

 , note the checking of the changes to make to the anarel-manage code: ps://github.com/slaclab/anarel-manage/issues/39 ...161dd

Old to New Conda Command Table
Below we go over the steps to create, develop, build and manage test releases - comparing old commands from the RPM release system to the new
conda based system.

Old commands like newrel, addpkg and relinfo are not available in the conda world. Most all steps are executed using the

condarel

program. Do condarel -h for the latest help on this script.

step old conda notes

get started source /reg/g/psdm/etc/ana_env.
sh

or

source /reg/g/psdm/etc/ana_env.
csh

source /reg/g/psdm/bin/conda_setup Bash only for conda, no .csh

After sourcing conda_setup,
/reg/g/psdm/bin is removed from your PATH (if it was
there)
it is replaced with /reg/g/psdm/sw/conda/manage/bin

create new test
release directory

newrel ana-current myrel condarel --newrel --name myrel in conda, myrel is based on the current conda
environment.

The previous conda_setup command activated a conda
environment like ana-1.2.3.

If you are not in a conda environment with psana-conda
installed, condarel will fail. Sourcing conda_setup will
automatically activate such an environment.

The old myrel directory has the hidden file .sit_release
with content like ana-0.19.21 In the new myrelease
directory,
the content will be the psana-conda package name and
version.

The new myrel directory will also have the hidden file
 with the full path of the conda .sit_conda_env

environment
myrelease is built against

https://confluence.slac.stanford.edu/display/PSDMInternal/SConsTools
https://confluence.slac.stanford.edu/display/PSDMInternal/SVN+based+Psana+Developer+Documentation
https://github.com/slaclab/anarel-manage/issues/39
https://github.com/slaclab/anarel-manage/issues/39
https://github.com/slaclab/anarel-manage/commit/ba850d656d26d64f5754c64a0aeb8aff9a8161dd

activate

test release

cd myrel
sit_setup

cd myrel
source conda_setup

conda_setup looks in the (like current directory
sit_setup) for
the special files mentioned above (but see row below). It
sets
PATH, LD_LIBRARY_PATH and PYTHONPATH to first
look for
programs, libraries and python modules built in your test
release
before looking for them in the conda environment.

conda_setup will add *tr* to your prompt to indicate that
you are
in a test release.

activate test
release in
another directory

sit_setup /path/to/my/release source conda_setup --reldir /path/to/my/release As above, but activate a test release in another directory

create
new package

newpkg MyPkg condarel --newpkg --name MyPkg Creates the directory MyPkg with a minimal
structure, include/src/app/data, and SConscript

create
new package in
psdm svn repo

psvn newpkg MyPkg ** use git ** We won't make packages in the svn psdm repo anymore.
We have removed psvn. Work directly with github/lcls-
psana

create new
package
in psdm users
repo

psvn -u newpkg MyPkg ** use git ** With github, bitbucket, slaclab, etc, there is no need for
users to
create repos in svn. psvn is removed.

checkout new
package

addpkg MyPkg condarel --addpkg --name MyPkg for packages that are not part of psana-conda
gets it from master in lcls-psana

checkout
existing package

addpkg XtcInput condarel --addpkg --name XtcInput Looks up the appropriate tag for the version of
psana-conda. Checks out that tag *note this puts you in
a
HEADLESS state, if developing, checkout master*

checkout
exisiting using
https

 condarel --addpkg --name XtcInput --https We default to ssh keys, but you can generate the https
based git clone command with the --https flag

checkout existing
package from
psdm
users repo

addpkg -u MyPkg condarel --addpkg --user --name MyPkg condarel takes --user flag to checkout from psdm users
repo. You can also use --tag if you maintain tags in your
repo.

checkout from
HEAD or master

addpkg XtcInput HEAD condarel --addpkg --name XtcInput --tag HEAD You can also specify specific tags with the
--tag argument, HEAD means master for git

build scons scons same

develop
pdsdata/psalg

very awkward condarel --addpkg --name pdsdata
condarel --addpkg --name pdsdata_ext

See also Building the psalg and pdsdata packages
With conda, pdsdata and psalg are part of the
psana-conda package. They get put in a subdirectory
called extpkgs. You need the proxy packages to
build/develop.

develop ndarray very awkward condarel --addpkg --name ndarray --tag HEAD
condarel --addpkg --name ndarray_ext
scons
tag ndarray when done

update version in ndarray recipe meta.yaml:
 conda package version
 git url -- your new tag
build new ndarray package (admin account):
 cd /reg/g/psdm/sw/conda/manage
 git pull (or fetch? Get you edits above)
 cd recipes/psana
 ana-rel-admin --cmd bld-pkg ndarray

ndarray live in it's own conda package.
The ndarray github repo does not include a SConscript.
You need the ndarray_ext to link it into the build system.
If ndarray_ext sees you've checked out ndarray, it
overrides
the ndarray in the conda environment.

After tagging your changes to ndarray, a new ndarray
conda
package must be built. Edit the meta.yaml on github in the
recipe in the links to the right. Now from the admin
account,
update the management code in
/reg/g/psdm/sw/conda/manage.
Now build a new ndarray package with ana-rel-admin.
The next time a release is built, the new ndarray is picked
up.

release
info

relinfo ** not implemented ** this is an important missing feature we need for github
should be condarel --relinfo

upgrade
release relupgrade ana-19.0.20

sit_setup
scons -c
scons

source activate ana-1.0.8
condarel --chenv
source conda_setup
scons -c
scons

In conda, first activate, using standard conda
commands, the environment you want to build against.
Then use the --chenv command, it picks up the
current conda environment.

https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=221054689
https://github.com/slaclab/anarel-manage/blob/master/recipes/psana/ndarray/meta.yaml#L3
https://github.com/slaclab/anarel-manage/blob/master/recipes/psana/ndarray/meta.yaml#L7

develop
Translator

addpkg Translator
scons

condarel --addpkg --name Translator
condarel --addpkg --name hdf5
condarel --addpkg --name openmpi
scons

Since the Translator includes headers using package
names, i.e,
#include "hdf5/hdf5.h"
You must first include the hdf5 and openmpi proxy
packages

work with
SConsTools

add it

remove it

addpkg SConsTools

rm -r SConsTools

condarel --addpkg --name SConsTools

rm -r SConsTools
rm SConstruct
condarel --sconslnk

If you remove SConsTools after checking it out, you have
to
do additional steps to restore SConstruct. Namely,
removing
the SConstruct link to the previously checked out version,
and
then using the --sconslnk command in condarel. This
creates
the link SConstruct --> SConstruct.main installed in conda
env.

Test scons test scons test same

work
on package
check in
new tag
to svn
psdm repo

addpkg MyPkg HEAD
cd MyPkg
modify code
svn status # see summary
svn diff # see changes
svn update
svn commit -m "message"
psvn tags
psvn tag V00-00-00

condarel --addpkg --name MyPkg --tag HEAD
same.
same
git status
git diff
git pull
git commit ...
git tag
git tag -a ...

We have removed the psvn tool

Please see for details of using gitVersion control with git

track diffs svn diff -r7810:HEAD file.h ?? Please see for details of using gitVersion control with git

exit conda -- undo_conda If you need to get out of the conda world, and go back
to where you were before (rpm based psana, if you are
sourcing /reg/g/psdm/etc/ana_env.sh) then the
undo_conda
command does this. releases built in the conda NOTE:
world
will not work in the old RPM world.

list releases ls $SIT_RELDIR

conda env list Think of the old RPM based releases as conda
environments - use standard conda commands to see
them
note - this lists your own environments (if you've made
any)
in addition to the ana environments maintained at LCLS.

identify
ana-current

ls -l $SIT_RELDIR/ana-current more /reg/g/psdm/sw/conda/current/ana/ana-
current

changed around April 1 2017, used to be conda/ana-
current

identify
dm-durrent

ls -l $SIT_RELDIR/current
(I think)

more /reg/g/psdm/sw/conda/current/dm/dm-current

look at

source code

ls $SIT_RELDIR/ana-current
/<pkg>

ls $SIT_RELDIR/<release>/<pkg>

ls /reg/g/psdm/sw/conda/scratch/<release>/<pkg>

ls $CONDA_PREFIX/lib/python2.7/site-packages
/<pkg>

Package source code is available through the scratch
directory.

In the conda environment only python code is available.

add pkg to
psana

edit the file in the ana-tags
/reg/g/psdm/sw/releases/buildbot
/tags
directory

update the file psana-conda-svn-pkgs
in the directory
/reg/g/psdm/sw/conda/manage/config
that is part of the github repo
anarel-manage

We should document this more completely in the
 Admin Documentation

Missing Functionality
Not all functionality of addpkg, relinfo, sit_setup etc have been implemented. If there is a feature that you need, let me know.

If you want to use the old commands, i.e, addpkg instead of condrel --addpkg, we can write new wrappers - but I think while we transition it is good to keep
the interfaces distinct as psana developers will be working with both build systems.

Converting a Release
I recommend leaving an old release alone and starting new ones based on conda, however there are two commands in condarel to convert back and forth.
This should work for users writing their own C++ psana modules, but won't work for psana developers that have checked out certain external proxy
packages. These commands are

condarel --convert2conda

note the name of the old rpm release that you lost. If you want to switch back, use that name with the

condarel --convert2rpm

https://confluence.slac.stanford.edu/display/PSDMInternal/Version+control+with+git
https://confluence.slac.stanford.edu/display/PSDMInternal/Version+control+with+git
https://github.com/slaclab/anarel-manage/blob/master/config/psana-conda-svn-pkgs
https://github.com/slaclab/anarel-manage
https://confluence.slac.stanford.edu/display/PSDMInternal/Admin+Documentation

command. See condarel -h for details.

References
Version control with git
https://github.com/lcls-psana/
SVN based Psana Developer Documentation
SConsTools

https://confluence.slac.stanford.edu/display/PSDMInternal/Version+control+with+git
https://github.com/lcls-psana/
https://confluence.slac.stanford.edu/display/PSDMInternal/SVN+based+Psana+Developer+Documentation
https://confluence.slac.stanford.edu/display/PSDMInternal/SConsTools

	Psana Developer Documentation

