ATLAS: CHESS2: Carrier/Daughter Board Requirements

Daughter Board Requirements:

- Board must fit into a 7.8cm (3.071") wide x 4.6cm (1.811") high x 10cm (3.937") deep cavity
 - Drawing of the cavity
 - No cabling requiring
- Mounting hole requirements:
 - 4x non-plated mounting holes
 - 2x in-line ASIC
 - Herve will provide the dimensions for TCT
 - 2x in-line with mating connector (to stabilize)
- Board Material:
 - ° FR4
 - o same as CHESS1
- Board Thickness:
 - o standard 1.6mm thickness
 - o same as CHESS1
- Allow board components:
 - ASIC, capacitors (wire bond only), 100 ohm LVDS termination resistors (wire bond only)
 - (Action Item for JJJ to get part number of wire bonded discretes)
- Not allow board components:
 - Non-LVDS termination resistors, plastic/metal connectors
- HV through the connector
- ASIC-to-board epoxy material:
 - Arldite
- Wire bonds Material:
 - o aluminum wedge wiring bonding
- ASIC Thermal Management Plan: _
 - Needs to be able to add cold plate
 - Need to assign a mech. eng. to design the cold plate (Action Item for Su Dong)
- Board Connector:
 - Hard gold finger edge connector
- · Able to test the daughter board before and after radiation without unsoldering/soldering any component:
 - Achieved via the edge connector
- Only implement the high speed digital signals
 - Off load the test structure testing to the CHESS1 carrier board
 - No right side wiring bonding pads
 - Requires a different CHESS2 daughter card design for CHESS1 board
- Place the chip 1mm from the edge of the board
- Able to support a hole underneath the ASIC by machining out the PCB board
- PCB plating:
 - Connectors are hard gold
 - Wire bonding pads soft gold
- Add test points for the digital test structure signals

Carrier Board Requirements:

- Support full 3+1, Pair only, 1+Test chip configurations (digital only)
- Socketed connector for an daughter card with an edge connector
 - High speed digital, SACI control, LV power, and HV control to/from the daughter board
- · Flexible timing control for multi-chip operation
- Interface to backend readout with just one SFP fiber link should be the most flexible generic form for evolution
 - Primarily PGP
 - Capable of supporting 1 GigE (1000BASE-SX)
- · Generic control/data interface for compatibility with main backend readout schemes of RCE and NEXYS video
 - o RCE via SFP
 - NEXY via SFP