
Ex 07 & Ex 08: Guided Back Propogation
We'll look at implementing guided back propagation in tensorflow. Summary - it doesn't look as good as what we did before (i.e:). Some guidedbackprop
differences:

Original work:
Keras using theano
pre-procecess images with log transofrm and grand mean subtraction
classifying the two color shot - 4 outputs, just the lasing runs

Present work:
Tensorflow
Our own batch normalization
classifying two outputs, from separate runs
We may be learning some systematic run differences
Not using a log transform

outlier speckle gets picked up in guided backprop

Issue
One uses the function. For some reason, it is producing nan's when it goes through my BatchNormalization ops, on Dense layers. It is fine on tf.gradients
the convnet. Workaround, skip over those layers in backprop.

Code:
Move data reading, one hot, confusion matrix into , one data reader for lasing, and another for 2 color labels with 4 outputs.MLUtil.py

Reading 2 color data is more complicated
convention is a label of -1 means don't use this sample for training

Build models here, , notes:TFModel.py
SequentialModel now has a methods to keep track of regularization
build up sum of terms
Total loss: mean(batch model) + sum(variable - L2 L1)

should it be mean of variables?
I don't think so, this way adding more variables mean you work harder to minimize that term
move making the optimizer and final loss into SequentialModel

ex07 won't use this, still make loss directly
ex08, which will regularize over 2 color 4 outputs, will use it

Guided Back Prop

start with logit that scored high for predicted label
don't use softmax, nonlinearity mixes in tyring to make the other logits small

compute derivative of logit with respect to image
Could do this with one call to tf.gradients, but for guided, and to work around batchnorm nan issue, go layer by layer
Per paper: , do the followingStriving for Simplicity: The All Convolutional Net

When doing backprop through a relu:
zero out negative values of gradient (don't propogate errors from above)
zero out gradient values where relu is 0 (don't propogate errors from below)

Still a little confused on these steps, why it works, another reference: github saliency maps Backpropagation.ipynb
for plotting, don't import matplotlib unless gbprop command is given, best not to import matplotlib if running in batch

Running ex07 code
python ex07_tf_guided_backprop.py train

python ex07_tf_guided_backprop.py predict

python ex07_tf_guided_backprop.py gbprop

Running ex08 code

Getting an accurate model

http://www.slac.stanford.edu/~davidsch/ImgMLearnDocDev/guidedbackprop.html#the-t1-t2-peak
https://www.tensorflow.org/versions/r0.9/api_docs/python/train.html#gradients
https://github.com/davidslac/mlearntut/blob/master/MLUtil.py
https://github.com/davidslac/mlearntut/blob/master/TFModel.py
http://arxiv.org/pdf/1412.6806v3.pdf
https://github.com/Lasagne/Recipes/blob/master/examples/Saliency%20Maps%20and%20Guided%20Backpropagation.ipynb

Need to use more data
Bigger batch size, meaning need to use more memory
Best to train on batch

Code: ex08_tf_4way_class.py

The train function can be modified to pass 'test' to the getTrainData function. Otherwise reads all data (takes about a minute)
The separate getTrainData function can be used from interactive ipython
large batch size of 64, will use too much memory on interactive nodes, reduce for testing
new function TFModel.build_2color_model
We will print the total loss, which includes the regularization term, as well as the cross entropy
For guided backprop, just print class 3 - both colors lased

Exercises

compare guided backprop to unguided - just a straight derivative of image

https://github.com/davidslac/mlearntut/blob/master/ex08_tf_4way_class.py

	Ex 07 & Ex 08: Guided Back Propogation

