
Detector Calibration Store
Content

Content
Purpose
Requirements
Architecture

Calibration directory and files
Repository
Experiment calibration directory
Local calibration directory
Direct path to calibration file
Structure of calibration directory

Calibration file structure
Calibration data hierarchical scheme
Schema features
Metadata in dictpars

Detector metadata
Calibration parameters' metadata
n-d array metadata

API
Parameters
Initialization
UI acess methods
Base class DCBase
Class DCStore
Class DCType
Class DCRange
Class DCVersion

TBD
2016-10-27 Mtg with cpo
References

Purpose
short-term goal - support calibration data for detectors moving across LCLS experiments.
long-term goal - calibration store for LCLS-II.

Hardware configuration of modern detector can be associated with unique index hardwired on detector controller chip. This index will be used to recognize 
detector and extract hardly retrievable calibration parameters for geometry, gain factors, masks etc. in case of transition of the detector from one 
experiment to another.

Requirements
Instrument independent/ Experiment  - detector can be moved between experiments, hatches, and instruments.
Portability - calibration data for particular detector should be portable as a self consistent file or (part of) calibration directory.
Interfaces - API, Command Line (CL), GUI for central management; management can ONLY be done through the API/CL/GUI in order to prevent 
adding/removing unknown files without history.
Time stamp (sec) - is THE ONLY value for validity range check; the same rules are applied to the time stamp like to the run number in current 
calibration system.
File name - the <detname> in the calibration store is <dettype>-<detid>.
Aliases to the calibration file names and specific data can be used to simplify access.
Versions - support versions of calibration data.
Links  - support access to predecessor and successor if this info is available.to predecessor and successor

Architecture
To accommodate requirements Detector Calibration Store (DCS) suppose to be implemented as a combination of file system (FS) and data base (DB) files 
(hdf5 for uniformity). Functionality of the DCS from bottom to top level can be listed as follows.

All calibration constants for particular detector id (  - index of the detector version) will be kept in a single hdf5 file named as detid <dettype>-
<detid>.h5

Schema of this file contains a few levels which account for constant types, time stamp ranges, versions of constants.
Beside main functionality each level contains dictionary of parameters and dictionary of history records.

These files are grouped in the directory for detector type; ex.: , etc.cspad, cspad2x2, pnccd
The same directory contains files with aliases  which map human readable detector name-and-version with <aliases1>.als
appropriate  file.<dettype>-<detid>.h5

All detector type folders in regular case are collected under  directory, although it is assumed that calibration files can be used directly.calib
The  directory may be nested in three locations;calib



repository - experiment-independent space with FS back-up, contains most complete calibration files in terms of time stamp and versions,
experimental work-space - experiment-dependent space, contains squeezed version of calibration files with time stamp and versions 
essential for particular experiment,
local work-space - experiment-independent any local directory, with squeezed files similar to .experimental work-space

 The   and   have predictable location in the file system,   may have an arbitrary path. Direct repository experimental works-pace local work-space
file access pick up calibration file from any place.

 Two-levels of interaction with DCS:
interaction with calibration data in particular calibration file,

add/get/remove constants for type, time stamp, version, etc.
add/remove/edit metadata.

data exchange between files between , and s.repository experimental    work-spacelocal
file difference
transfer constants for type, time stamp, version, etc.
use web-service mechanism

Access Control Lists (ACL) depends on file location and is assumed to be
repository - limited to dedicated persons
experimental work-spaces - members of experimental group

 work-spacelocal s - all

Calibration directory and files

Repository

instrument and experiment-independent path to calibration directory and file

/reg/g/psdm/detector/calib/
                                          <dettype>/<dettype>-<detid>.h5

Experiment calibration directory

experiment-dependent path to calibration directory and file

/reg/d/psdm/<INS>/<experiment>/calib/
                                                             <dettype>/<dettype>-<detid>.h5

Local calibration directory

local calib path to calibration directory and file

<path>/calib/
                    <dettype>/<dettype>-<detid>.h5

Direct path to calibration file

direct path to calibration file

<path>/<dettype>-<detid>.h5

Structure of calibration directory

Everything in lower case:

<path>/calib/                                   # top calib directory
             <dettype>/                         # detector type folders
             cspad2x2/
             pnccd/
             epix100a/
             cspad/
                       <files>                  # level of files
                       <aliases1>.als           # file with a map of aliases to detector names
                       ...
                       <aliasesN>.als           # one of these files can be used to map "sources" to detector 
names
                       <dettype>-<detid>.h5     # files with detector-dependent calibration data
                       <dettype>-<detid>.h5

 



The  directory is a top level DCS directory.calib
Detector type  folders are used to organize files under the  directory. In case of direct access to the hdf5 file the detector type <dettype> calib
is duplicated in the name of the file.
Unique part of the detector name  is used to assign calibration file to the particular detector hardware configuration version. If the <detid>
detector hardware configuration is changing a new calibration file is created with new .<detid>
Information about predecessor and successor (if available) can be saved under the root level of the calibration file.
Current sources (ex:  ) could be presented in the dictionary of aliases.'Camp.0:pnCCD.1'

Calibration file structure

Calibration data hierarchical scheme

Access to calibration data is based on time stamp. Time stamp internally is presented in  sec which can be easily converted forth and back to Unix time
human readable  format YYYY-MM-DDTHH:MM:SS+HH:MM

The schema (structure) of the DCS files <dettype>-<detid>.h5

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601


DCStore  DCType                   DCRange         DCVersion    

/                                                                   # top-root-level contains info for the 
unique detector version
 dettype (str)                                                      # detector type name, ex: cspad, pnccd, etc
 detid (str)                                                        # unique detector id, ex: 01234
 tscfile (float)                                                    # time stamp of creation of this structure
 predecessor (str)                                                  # name of the previous detector if 
available or None
 successor (str)                                                    # name of the next detector if available or 
None
 dictpars (dict)                                                    # dictionary of parameters associated with 
this version of detector
 history (dict)                                                     # dictionary of history records paired as 
(tstamp:record)
 <ctype>/                                                           # folder for calibration type, ex.: 
pedestals, rms, mask, etc
          ctype (str)                                               # calibration type name
          dictpars (dict)                                           # dictionary of parameters associated with 
calibration type
          history (dict)                                            # dictionary of history records paired as 
(tstamp:record)
          <tstamp-range>/                                           # folder for time stamp validity range
          <tstamp>[-<tstamp-end>]/                                  # folder for validity range. If <tstamp-
end> is not specified - then valid to the end
                                  tsbegin (float)                   # time stamp for the beginning of the 
validity range
                                  tsend (float)                     # time stamp for the end of the validity 
range
                                  defaultv                          # reference to the default calibration, 
ex:  <vers-tstamp2>
                                  dictpars (dict)                   # dictionary of parameters associated with 
validity range
                                  history (dict)                    # dictionary of history records paired as 
(tstamp:record)
                                  <vers-tstamp1>/                   # folder for version created on tstamp1
                                                 tsvers (float)     # tstamp1 of this version production 
                                                 calib (ndarray)    # calibration data
                                                 history (dict)     # dictionary of history records paired as 
(tstamp:record)
                                                 dictpars (dict)    # dictionary of parameters, 
                                                                    #   ex: array size, number of dimensions, 
shape, data type, experiment, run, comments, author

                                  <vers-tstamp2>/                   # folder for version created on tstamp2
                                                 tsvers (float)
                                                 calib (ndarray)
                                                 history (dict)
                                                 dictpars (dict)
           <tstamp2>[-<tstamp2-end>]/                               # folder for the next validity range.
 pedestals/                                                         # folder for the next calibration type, 
pedestals
 rms/                                                               # folder for the next calibration type, rms

Schema features

Detector name consists of a common part   and unique part .<dettype> <detid>
Alias to the detector name should be kept in separate dictionary outside the file scheme.
Each detector may have optional predecessor, successor, and other parameters kept in the dictionary of parameters.
Calibration type folders contain info about calibrations of particular type, ex: pedestals, rms, status, mask, background, etc.
Each calibration type contains a set of time stamp ranges defining calibration validity range. If the second time stamp of the range is missing it is 
considered as infinity (by the end).
The time stamp range folder contains tstamp_begin, tstamp_end (int) values, dictionary of parameters associated with this folder, reference to the 
default calibration, and folders with calibration versions, distinguished by there production time stamp.
The number of calibration versions for each time stamp range is unlimited. Default calibration is defined by the reference default version defaultv
.

Metadata in dictpars



Below are the lists of metadata fields which potentially can be used to define detector configuration, calibration parameters etc.

Detector metadata

Field name Description More details, example

dettype detector type CSPAD, CSPAD2X2, EPIX100A, etc.

detname detector unique name (if any) ex.: Camera1

detalias alias name if it is hard to memorize the entire name, ex.: 'cspad1'

detidx detector index integer number which codes the hardware version

detidxalias symbolic alias of the index can be used if it is hard to memorize the index integer number

detcompidx:001 list of component indexes just in case if we are going to retrieve calibration parameters for separate components

detidxprev detector index for previous version detector index for previous version (if available) for the purpose of old calibration search

detidxnext detector index for next version detector index for next version (if available) for the purpose of new calibration search

dettsec time-stamp time stamp associated with beginning of the validity range for new configuration

detcom:001 comments for this hardware version as it says { }key:comment

detpar:001 other parameters just in case if something is forgotten in this table

Calibration parameters' metadata

Field name Description More details, example

calibtype calibration type ex.: geometry, pixel_status, pixel_gain, pedestals, common_mode, etc.

tsec time stamp beginning of the validity range

exp original experiment (if available) where calibration constants were obtained

runnum original run number (if available) where calibration constants were obtained

runbegin begin run number (if available) for validity range

runend end run number (if available) for validity range

source original DAQ data source data source from DAQ, ex.: 'CxiDs2.0:Cspad.0'

srcalias data source alias ex.: 'cspad'

calibvers version par in order to access using symbolic name or some alias

calibversalias version alias if it is hard to memorize version par

com:001 comments for this version as it says { }key:comment

par:001 other parameters just in case if something is forgotten in this table

In case of numpy array their metadata are stored with an object. 
Text file needs in n-d array metadata

n-d array metadata

Field name Description More details, example

DTYPE (str) data type int, float, double, etc.

NDIMS (int) number of dimensions (N) ex.: 3

DIM:1 (int) size of dim.1 ex.: 185

DIM:2 (int) size of dim.2 ex.: 388

... ... ...

DIM:N (int) size of dim.N ex.: 2

http://detcompidx:001
http://detcom:001
http://keycomment
http://dettag:001
http://com:001
http://keycomment
http://tag:001


API

Parameters

dettype (str) - detector type: , etc.cspad, cspad2x2, pnccd, fccd, opal, epix100a

ctype (str) - calibration type: pedestals, status, rms, mask, gain, bkgd, common_mode, geometry

detid (str) - detector unique id number, ex: 123456

detname (str) - detector unique name, combination of <dettype>-<detid>

detalias (str) - detector alias name assigned to the detname

cpath (str) - path to the calibration directory (ex: ) or direct hdf5 file name (ex: ). cpath='<path>/calib' cpath='<path>/<detname>-<detid>.h5'
Default calibration directory .CPATH_DEF='/reg/g/psdm/detector/calib'

version (int) - time stamp of the version creation

versind (int) - consecutive version index assigned/mapped to the version production time stamp.

 

Initialization

# Import
from PSCalib.DCStore import DCStore       # inport DCStore (Detector Calibration Store) object 

# Initialization
REPO = '/reg/g/psdm/detector/calib'       # default calib repository

cdir = env.calibDir()                     # '/reg/d/psdm/<INS>/<experiment>/calib' - accept current directory
path = cdir + <dettype>

fname = '[path/]pnccd-12345678'           # standard name includes detector type, dash, and n-digit id number
fname = '[path/]Camera1'                  # alias

cs = DCStore(fname)                       # creates a DCStore object.
""" get calibration store object
    Input parameters:
    fname [str] - file name/alias of the detector 
"""

If path is missing - use repository.
If calibration file is not found - throw raise IOError('File %s is not available' % fname)

UI acess methods

ctype = pedestals # status, rms, mask, gain, bkgd, common_mode, geometry, etc
tsp = tstamp parameter to identify constants, which can be retrieved from evt.run() - run number, evt
vers = None # for default or versind or version time stamp.

# generic access method:
obj = cs.get(ctype, tsp, vers=None)

Base class DCBase

Is reserved to support common methods of all project classes. For now it stands for manipulations with dictpars but not limited to.



o = DCBase()

# acess methods
dictpars = o.dictpars()            # returns (dictpars) dictionary of dictpars associated with each object
par  = o.par(k)                    # returns par value for key k
log  = o.history(fmt)              # returns (str) history records preceded by the time stamp (default fmt='%Y-%
m-%dT%H:%M:%S%Z') as a text 
d    = o.histdict()                # returns (dict) history dictionary associated with current object

# management methods
o.set_dictpars(d)                  # set (d) dictionary of parameters for object
o.add_par(k,v)                     # add (k,v) par to the dictionary of parameters for object
o.del_dictpars()                   # delete all parameters from the dictionary
o.del_par(k)                       # delete par with key k
o.set_history(d)                   # set (dict) as a history dictionary of the current object
o.add_history(rec, ts)             # add (str) record with (float) time stamp to the history dictionary (ts:
rec). If ts is None - call current time is used as a key. 

Class DCStore

cs = DCStore(cpath, detname)       # (str) path to calib directory or file, (str) detector name

# acess methods
nda   = cs.get(ctype, tsp, vers)   # (str) ctype - calibration type
                                   # (...) tsp - parameter to get time stamp (evt, runnum, ts_sec) 
                                   # (int) vers - version of calibration, None - use default 
tscfile     = cs.tscfile()         # (int) time stamp of the file creation
dettype     = cs.dettype()         # (str) detector type
detid       = cs.detid()           # (str) detector id
detname     = cs.detname()         # (str) detector name of self object
predecessor = cs.predecessor()     # (str) detname of predecessor or None
successor   = cs.successor()       # (str) detname of successor or None
ctypes      = cs.ctypes()          # (list) calibration types in the file
cto         = cs.ctypeobj(ctype)   # (DCType ~ h5py.Group) calibration type object

# management methods
cs.set_tscfile(ts)                 # set (int) time stamp of the file creation  
cs.set_dettype(dettype)            # set (str) detector type
cs.set_detid(detid)                # set (str) detector id
cs.set_detname(detname)            # set (str) detector name of self object
cs.set_predecessor(pred)           # set (str) detname of predecessor or None
cs.set_successor(succ)             # set (str) detname of successor or None
cs.add_ctype(ctype)                # add (str) calibration type to the DCStore object
cs.del_ctype(ctype)                # delete ctype (str) from the DCStore object
cs.save(path)                      # save current calibration in the file specified by path, if path is Null - 
update current file.

Class DCType

cto = DCType(dettype)              # (str) detector type

# acess methods
ctype      = cto.ctype()           # (str) of ctype name
tsranges   = cto.ranges()          # (list) of time ranges for ctype
tsro       = cto.rangeobj(tsrange) # (DCRange ~ h5py.Group) time stamp validity range object

# management methods
cto.add_range(tsr)                 # add (str) of time ranges for ctype
cto.del_range(tsr)                 # delete range from the DCType object

Class DCRange



tsro = DCRange(tsrange)            # (str) time stamp validity range
tsro = DCRange(tsbegin, tsend)     # (int,int) time stamp validity range

# acess methods
tsbegin     = tsro.begin()         # (int) time stamp beginning validity range
tsend       = tsro.end()           # (int) time stamp ending validity range
versions    = tsro.versions()      # (list of float) versions of calibrations
versodef    = tsro.versdef()       # (DCVersion ~ h5py.Group) reference to the default version in the time-
range object
verso       = tsro.versobj(vers)   # (DCVersion ~ h5py.Group) specified version in the time-range object

# management methods
tsro.set_begin(tsbegin)            # set (int) time stamp beginning validity range
tsro.set_end(tsend)                # set (int) time stamp ending validity range
tsro.add_version(vers)             # set (DCVersion ~ h5py.Group) versions of calibrations
tsro.set_versdef(vers)             # set (DCVersion ~ h5py.Group) versions of calibrations
tsro.del_version(vers)             # delete version

Class DCVersion

verso = DCVersion(vers)            # (str) version name

# acess methods
tsvers      = verso.tsprod()       # (int) time stamp of the version production
calibdata   = verso.calib()        # (np.array) calibration array

# management methods
verso.set_tsprod(tsprod)           # set (int) time stamp of the version production
verso.add_calib(nda)               # set (np.array) calibration array

TBD
Open questions

logic for default version
always last added constants
set specified version
what to do with default if new version is added?

 

when constants are updated (file open to write) they are not available... Lock to resolve.

Data flow

who produces and supply constants
who is allowed to submit constants
who is allowed to access constants
ACL inside API or using OS
ACL for all or particular detector/type/ etc.

2016-10-27 Mtg with cpo
table of aliases with records: <alias> <source> <begin> <end>
repository   "g" or "d"/reg/g/psdm/detector/calib
epix100a full name  - 6 numbers of hardware versions, firmware version is a 7th number
time double to two integers or int64 (32bit-sec, 32-bit-nsec)
geometry needs to be saved as a text
repository file has  and  - like constantsgeometry pixel_gain
do not search in <experiment>/calib
access through network for AMI (cpo: TCP with hardwired IP addresses, m:web service/reddis)

References



Calibration Store
Unix time
ISO 8601 time format

 

https://confluence.slac.stanford.edu/display/PSDMInternal/Calibration+Store
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601

	Detector Calibration Store

