
Hit and Peak Finding Algorithms
This note is about n-d array processing algorithms implemented in . Algorithms can be called from python but low level ImgAlgos.PyAlgos
implementation is done on C++ with wrapper. All examples are shown for python level interface.boost/python

Content

Content
Common features of algorithms

n-d arrays
Windows
Mask

Make object and set parameters
Define ROI using windows and/or mask

Hit finders
Number of pixels above threshold

number_of_pix_above_thr
Total intensity above threshold

intensity_of_pix_above_thr
Peak finders

Peak selection parameters
Two threshold "Droplet finder"

peak_finder_v1
peak_finder_v4

Flood filling algorithm
peak_finder_v2

Local maximums search algorithm
peak_finder_v3
Demonstration for local maximum map

Evaluation of the background level, rms, and S/N ratio
Matrices of pixels for r0=3 and 4 and different dr values
Matrices of pixels for r0=5 and 6 and different dr values
Matrix of pixels for r0=7

Test of peak finders
Photon counting
References

Common features of algorithms

n-d arrays

LCLS detector data come from DAQ as n-d arrays (ndarray in C++ or numpy.array in Python). In simple case camera data is an image presented by the 2-
d array. For composite detectors like CSPAD, CSPAD2X2, EPIX, PNCCD, etc. data comes from a set of sensors as 3-d or 4-d arrays. If relative sensors'
positions are known, then sensors can be composed in 2-d image. But this image contains significant portion of "fake" empty pixels, that may be up to ~20-
25% in case of CSPAD. Most efficient data processing algorithms should be able to work with n-d arrays.

Windows

In some experiments not all sensors contain useful data. It might be more efficient to select Region of Interest (ROI) on sensors, where data need to be
processed. To support this feature a tuple (or list) of windows is passed as a constructor parameter. Each window is presented by the tuple of 5
parameters , where is a sensor index in the n-d array, other parameters constrain window 2-(segnum, rowmin, rowmax, colmin, colmax) segnum
d matrix rows and columns. Several windows can be defined for the same sensor using the same . For 2-d arrays parameter is not used, segnum segnum
but still needs to be presented in the window tuple by any integer number. If To increase algorithm efficiency only pixels in windows are processed. window

, all sensors will be processed.s=None

The array of windows can be converted in 3-d or 2-d array of mask using method .pyimgalgos.GlobalUtils.mask_from_windows

Mask

Alternatively ROI can be defined by the mask of good/bad (1/0) pixels. For 2-d image mask can easily be defined in user's code. In case of 3-d arrays the M
 helps to produce ROI mask. Entire procedure includesask Editor

conversion of n-d array to 2-d image using geometry,
production of ROI 2-d mask with ,Mask Editor
conversion of the 2-d mask to the mask n-d array using geometry.

All steps of this procedure can be completed in under the tab ROI.Calibration Management Tool

In addition mask accounts for bad pixels which should be discarded in processing. Total mask may be a product of ROI and other masks representing good
/bad pixels.

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/pyimgalgos/#function-pyimgalgos-globalutils-mask-from-windows
https://confluence.slac.stanford.edu/display/PSDM/Mask+Editor
https://confluence.slac.stanford.edu/display/PSDM/Mask+Editor
https://confluence.slac.stanford.edu/display/PSDM/Mask+Editor
https://confluence.slac.stanford.edu/display/PSDM/Calibration+Management+Tool

1.
2.
3.

Make object and set parameters

Any algorithm object can be created as shown below.

import numpy as np
from ImgAlgos.PyAlgos import PyAlgos

create object:
alg = PyAlgos(windows=winds, mask=mask, pbits=0)

Define ROI using windows and/or mask

Region Of Interest (ROI)is defined by the set of rectangular windows on segments and mask, as shown in example below.

List of windows
winds = None # entire size of all segments will be used for peak finding
winds = ((0, 0, 185, 0, 388),
 (1, 20,160, 30,300),
 (7, 0, 185, 0, 388))

Mask
mask = None # (default) all pixels in windows will be used for peak finding
mask = det.mask() # see class Detector.PyDetector
mask = np.loadtxt(fname_mask) #
mask.shape = <should be the same as shape of data n-d array>

Hit finders
Hit finders return simple values for decision on event selection. Two algorithms are implemented in . They count number of pixels ImgAlgos.PyAlgos
and intensity above threshold in the Region Of Interest (ROI) defined by windows and mask parameters in object constructor.

Both hit-finders receive input n-d drray and threshold parameters and return a single value in accordance with method name.data thr

Number of pixels above threshold

number_of_pix_above_thr

npix = alg.number_of_pix_above_thr(data, thr=10)

Total intensity above threshold

intensity_of_pix_above_thr

intensity = alg.intensity_of_pix_above_thr(data, thr=12)

Peak finders
Peak finder works on calibrated, background subtracted n-d array of data in the region of interest specified by the list of windows and using only good
pixels from mask n-d array. All algorithms implemented here have three major stages

find a list of seed peak candidates
process peak candidates and evaluate their parameters
apply selection criteria to the peak candidates and return the list of peaks with their parameters

The list of peaks contains 17 (float for uniformity) parameters per peak:

seg - segment index beginning from 0, example for CSPAD this index should be in the range (0,32)
row - index of row beginning from 0
col - index of column beginning from 0
npix - number of pixels accounted in the peak
amp_max - pixel with maximal intensity
amp_total - total intensity of all pixels accounted in the peak

row_cgrav - row coordinate of the peak evaluated as a "center of gravity" over pixels accounted in the peak using their intensities as weights
col_cgrav - column coordinate of the peak evaluated as a "center of gravity" over pixels accounted in the peak using their intensities as weights
raw_sigma - row sigma evaluated in the "center of gravity" algorithm
col_sigma - column sigma evaluated in the "center of gravity" algorithm
row_min - minimal row of the pixel group accounted in the peak
row_max - maximal row of the pixel group accounted in the peak
col_min - minimal column of the pixel group accounted in the peak
col_max - maximal column of the pixel group accounted in the peak
bkgd - background level estimated as explained in belowsection
noise - r.m.s. of the background estimated as explained in below section
son - signal over noise ratio estimated as explained in below section

There is a couple of classes helping to save/retrieve peak parameter records in/from the text file:

pyimgalgos.PeakStore
pyimgalgos.TDFileContainer

Peak selection parameters

Internal peak selection is done at the end of each peak finder, but all peak selection parameters need to be defined right after algorithm object is
created. These :peak selection parameters are set for all peak-finders

create object:
alg = PyAlgos(windows=winds, mask=mask)

set peak-selector parameters:
alg.set_peak_selection_pars(npix_min=5, npix_max=5000, amax_thr=0, atot_thr=0, son_min=10)

npix_min: minimum number of pixels that pass the "low threshold" cut
npix_max: maximum number of pixels that pass the "low threshold" cut
amax_thr: pixel value must be greater than this high threshold to start a peak
atot_thr: to be considered a peak the sum of all pixels in a peak must be greater than this value
son_min: required signal-over-noise (where noise region is typically evaluated with radius/dr parameters). set this to zero to disable the signal-

.over-noise cut

All peak finders have a few algorithm-dependent parameters

nda - calibrated n-d array of data, pedestals and background should be subtracted, common mode - corrected
thr* - different type of thresholds
rank - peak rank as explained in below.section
r0, dr - ring internal radius and width to evaluate background and noise rms as explained in below.section

Two threshold "Droplet finder"

two-threshold peak-finding algorithm in restricted region around pixel with maximal intensity. Two threshold allows to speed-up this algorithms. It is
assumed that only pixels with intensity above are pretending to be peak candidate centers. Candidates are considered as a peak if their thr_high
intensity is maximal in the (square) region of around them. Low threshold in the same region is used to account for contributing to peak pixels.radius

peak_finder_v1

peaks = alg.peak_finder_v1(nda, thr_low=10, thr_high=150, radius=5, dr=0.05)

Parameter in this algorithm is used for two purpose:radius

defines (square) region to search for local maximum with intensity above and contributing pixels with intensity above thr_high thr_lo,
is used as a parameter to evaluate background and noise rms as explained in below.r0 section

peak_finder_v4

peaks = alg.peak_finder_v4(nda, thr_low=10, thr_high=150, rank=4, r0=5, dr=0.05)

The same algorithm as , but parameter is split for two and with the same meaning as in peak_finder_v1 radius (unsigned) rank (float)r0 pe
. ak_finder_v3

Flood filling algorithm

define peaks for regions of connected pixels above threshold

peak_finder_v2

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/pyimgalgos/#module-pyimgalgos.PeakStore
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/pyimgalgos/#module-pyimgalgos.TDFileContainer

peaks = alg.peak_finder_v2(nda, thr=10, r0=5, dr=0.05)

Two neighbor pixels are assumed connected if have common side. Pixels with intensity above threshold are considered only.thr

Local maximums search algorithm

define peaks in local maximums of specified rank (radius), for example rank=2 means 5x5 pixel region around central pixel.

peak_finder_v3

peaks = alg.peak_finder_v3(nda, rank=2, r0=5, dr=0.05)

makes a map of pixels with local maximums of requested rank for data ndarray and mask, pixel code in the map may have bits 0/1/2/4 standing
for not-a-maximum / maximum-in-row / maximum-in-column / maximum-in-rectangular-region of radius=rank.
for each pixel with local maximal intensity in the region defined by the rank radius counts a number of pixels with intensity above zero, total
positive intensity, center of gravity coordinates and rms,
using parameters evaluates background level, rms of noise, and S/N for the pixel with maximal intensity. r0(ex.=5.0), dr(ex.=0.05)
makes list of peaks which pass selector with parameters set in , for exampleset_peak_selection_pars

alg.set_peak_selection_pars(npix_min=5, npix_max=500, amax_thr=0, atot_thr=1000, son_min=6)

Demonstration for local maximum map

Test for 100x100 image with random normal distribution of intensities

Example of the map of local maximums found for rank from 1 to 5:

color coding of pixels:

blue=0 - not a local maximum
green=1 - local maximum in row
yellow=1+2 - local maximum in row and column
red=1+2+4 - local maximum in rectangular region of radius=rank.

Table for rank, associated 2-d region size, fraction of pixels recognized as local maximums for rank, and time consumption for this algorithm.

rank 2-d region fraction time, ms

1 3x3 0.1062 5.4

2 5x5 0.0372 5.2

3 7x7 0.0179 5.1

4 9x9 0.0104 5.2

https://confluence.slac.stanford.edu/download/attachments/193782940/map-locmax-100x100-random.png?version=1&modificationDate=1443647548000&api=v2
https://confluence.slac.stanford.edu/download/attachments/193782940/map-locmax-100x100-rank-1.png?version=2&modificationDate=1443658300000&api=v2
https://confluence.slac.stanford.edu/download/attachments/193782940/map-locmax-100x100-rank-2.png?version=2&modificationDate=1443658316000&api=v2
https://confluence.slac.stanford.edu/download/attachments/193782940/map-locmax-100x100-rank-3.png?version=3&modificationDate=1443658376000&api=v2
https://confluence.slac.stanford.edu/download/attachments/193782940/map-locmax-100x100-rank-4.png?version=4&modificationDate=1443658468000&api=v2
https://confluence.slac.stanford.edu/download/attachments/193782940/map-locmax-100x100-rank-5.png?version=3&modificationDate=1443658494000&api=v2

5 11x11 0.0066 5.2

Evaluation of the background level, rms, and S/N ratio

When peak is found, its parameters can be precised for background level, noise rms, and signal over background ratio (S/N) can be estimated. All these
values can be evaluated using pixels surrounding the peak on some distance. For all peak-finders we use the same algorithm. Surrounding pixels are
defined by the ring with internal radial parameter and ring width (both in pixels). The number of surrounding pixels depends on and r0 dr r0 dr
parameters as shown in matrices below. We use notation

+ central pixel with maximal intensity,
1 pixels counted in calculation of averaged background level and noise rms,
0 pixels not counted.

Matrices of pixels for r0=3 and 4 and different dr values

r0=3, dr=0.1 and r0=4 dr=0.2 examples

r0=3 dr=0.1 (4 pixels) r0=3 dr=0.5 (12 pixels) r0=3 dr=1 (24 pixels)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
0 1 0 0 + 0 0 1 0 0 1 0 0 + 0 0 1 0 1 1 0 0 + 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

r0=4 dr=0.2 (12 pixels) r0=4 dr=0.3 (16 pixels) r0=4 dr=0.5 (24 pixels)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 + 0 0 0 1 0 0 1 0 0 0 + 0 0 0 1 0 0 1 0 0 0 + 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Matrices of pixels for r0=5 and 6 and different dr values

https://confluence.slac.stanford.edu/download/attachments/193782940/SoN.png?version=1&modificationDate=1461173800000&api=v2

r0=5, dr=0.05 and r0=6, dr=0.2 examples

r0=5 dr=0.05 (12 pixels) r0=5 dr=0.5 (28 pixels)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 + 0 0 0 0 1 0 0 1 0 0 0 0 + 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r0=6 dr=0.2 (12 pixels) r0=6 dr=0.5 (28 pixels)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 + 0 0 0 0 0 1 0 0 1 0 0 0 0 0 + 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Matrix of pixels for r0=7

r0=7, dr=2 example

 r0=7 dr=2 (108 pixels)
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0
 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0
 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
 1 1 1 0 0 0 0 0 0 + 0 0 0 0 0 0 1 1 1
 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0
 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0
 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Test of peak finders

Test of Peak Finders
Test of Peak Finders - V2

https://confluence.slac.stanford.edu/display/PSDMInternal/Test+of+Peak+Finders
https://confluence.slac.stanford.edu/display/PSDMInternal/Test+of+Peak+Finders+-+V2

Photon counting
Photon conversion in pixel detectors is complicated by the split photons between neighboring pixels. In some cases, energy deposited by a photon is split
between two or (sometimes) more pixels. The photon counting algorithm described here is designed to account for this effect and return an unassembled
array with correct number of photons per pixel. Pythonic API for this algorithm is as follows:

Import
import psana

Initialize a detector object
det = psana.Detector('myAreaDetectorName')
Merges photons split among pixels and returns n-d array with integer number of photons per pixel.
nphotons_nda = det.photons(evt, nda_calib=None, mask=None, adu_per_photon=None)

The det.photons() function divides the pixel intensities (ADUs) by adu_per_photon, resulting in a fractional number of photons for each pixel. This function
is a wrapper around photons() method in PyAlgos:

Import
from ImgAlgos.PyAlgos import photons

Merges photons split among pixels and returns n-d array with integer number of photons per pixel.
nphotons_nda = photons(fphotons, adu_per_photon=30)

Sphinx doc

Method receives (float) n-d numpy array representing image intensity in terms of (float) fractional number of photons and an photons fphotons
associated of bad pixels. Both arrays should have the same shape. Two lowest dimensions represent pixel rows and columns in 2-d pixel matrix mask
arrays. Algorithm works with good pixels defined by the mask array (1/0 = good/bad pixel). Array is represented with two arrays; An array fphotons
containing whole number of photons (integer) and the leftover fractional number of photon array (float) of the same shape. Assuming the photons are only
split between two adjacent pixels, we round up the adjacent pixels if they sum up to be above 0.9 photons. The algorithm is best explained using an
example:

Let's say we measured the following ADUs on our detector. "adu_per_photon" is user-defined, but for this example let's set it to 1:

ADUs (adu_per_photon=1):
0.0 3.5 0.1 0.2
0.2 0.4 0.0 1.2
0.1 4.7 3.4 0.0
0.5 0.4 0.4 0.1

We expect the converted photon counts to be:

Photons:
0 4 0 0
0 0 0 1
0 5 3 0
1 0 0 0

To see how we get from ADUs to Photons, we split the ADUs into whole photons and fractional photons.

ADUs = Whole photons + Fractional photons
0.0 3.5 0.1 0.2 0 3 0 0 0.0 0.5 0.1 0.2
0.2 0.4 0.0 1.2 = 0 0 0 1 + 0.2 0.4 0.0 0.2
0.1 4.7 3.4 0.0 0 4 3 0 0.1 0.7 0.4 0.0
0.5 0.4 0.4 0.1 0 0 0 0 0.5 0.4 0.4 0.1

Assuming the photons are only split by two adjacent pixels, we search for a pixel that has at least 0.5 photons with an adjacent pixel that sum up to above
0.9 photons. In cases where a pixel has multiple adjacent pixels which sum up to above 0.9 photons, we take the largest adjacent pixel. If such an
adjacent pair of pixels is found, then the adjacent pixel values are merged into one pixel. It is merged into the pixel with the larger value. (See "After
merging adjacent pixels" example below).

The merged adjacent pixels are then rounded to whole photons. (See "Rounded whole photons" example below).

https://confluence.slac.stanford.edu/download/attachments/193782940/SoN.png?version=1&modificationDate=1461173800000&api=v2

Fractional photons
0.0 0.5 0.1 0.2
0.2 0.4 0.0 0.2
0.1 0.7 0.4 0.0
0.5 0.4 0.4 0.1

After merging adjacent pixels:
0.0 0.9 0.1 0.2
0.2 0.0 0.0 0.2
0.1 1.1 0.0 0.0
0.9 0.0 0.4 0.1

Rounded whole photons:
0 1 0 0
0 0 0 0
0 1 0 0
1 0 0 0

Photons is then the sum of "Whole photons" and "Rounded whole photons":

Photons = Whole photons + Rounded whole photons:
0 4 0 0 0 3 0 0 0 1 0 0
0 0 0 1 = 0 0 0 1 + 0 0 0 0
0 5 3 0 0 4 3 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 0

References
ImgAlgos.PyAlgos - code documentation
psalgos - new peak-finder and other algorithms code documentation
Peak Finding - short announcement about peak finders
Hit and Peak Finders - examples in Chris' tutorial
GUI for tuning peak finding - Chun's page in development
Auto-generated documentation - references to code-based documentation for a few other useful packages
pyimgalgos.PeakStore - class helping to save peak parameter records in the text file
pyimgalgos.TDFileContainer - class helping to retrieve peak parameter records from the text file
Test of Peak Finders - example of exploitation of peak finders
Test of Peak Finders - V2 - example of exploitation of peak finders after revision 1 (uniformization)
photons - sphinx doc
Peak Finding Module - (depricated) psana module, it demonstaration examples and results
Psana Module Catalog - (depricated) peak finding psana modules
Psana Module Examples - (depricated) peak finding examples in psana modules

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/ImgAlgos/#module-ImgAlgos.PyAlgos
https://lcls-psana.github.io/psalgos/index.html#module-pypsalgos
https://confluence.slac.stanford.edu/display/PSDM/Peak+Finding
https://confluence.slac.stanford.edu/display/PSDM/Hit+and+Peak+Finders
https://confluence.slac.stanford.edu/display/PSDM/Peak+Finding+Module
https://confluence.slac.stanford.edu/display/PSDM/Auto-generated+documentation
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/pyimgalgos/#module-pyimgalgos.PeakStore
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/pyimgalgos/#module-pyimgalgos.TDFileContainer
https://confluence.slac.stanford.edu/display/PSDMInternal/Test+of+Peak+Finders
https://confluence.slac.stanford.edu/display/PSDMInternal/Test+of+Peak+Finders+-+V2
https://confluence.slac.stanford.edu/download/attachments/193782940/SoN.png?version=1&modificationDate=1461173800000&api=v2
https://confluence.slac.stanford.edu/display/PSDM/Peak+Finding+Module
https://confluence.slac.stanford.edu/display/PSDM/psana+-+Module+Catalog#psana-ModuleCatalog-ModuleImgAlgos::ImgPeakFinder
https://confluence.slac.stanford.edu/display/PSDM/psana+-+Module+Examples#psana-ModuleExamples-ExampleformoduleImgAlgos::ImgPeakFinder

	Hit and Peak Finding Algorithms

