Workpackages

Core Framework

a framework has to be set up that
® builds under Java 1.4 (Maven, ant,....)
® builds with gcj (make)
® reads xml files

d O initially use compact format
o gradually extend/modify as needed
® drivers need to read xml and implement gear
® drivers should create geometry elements
o for detailed view (low level)
o for tracking view (mid level)
® initially export to GDML/LCDD should be suported

optionally some wrapping C++ code should be provided that allows to use LCGO in a C++ programm w/o having to rely on references to Java libraries, e.
g. for the properties interface

® need to understand garbage collection for java and C++ objects allocated on the stack and on the heap and passing object between java and c++
O java objects are objects inheriting from java::lang::Object
O C++ are all other objects
" Possibly interesting article http://gcc.gnu.org/ml/java/2004-03/msg00159.html

Material Database

a material data base is needed that
® consists of the known materials

® has all the material properties needed for dE/dx
© A, Z (mean values) , X0, Interaction length,....

° © check geant4/geant3 which these are

® s extensible by the user in input xml files

® provides material objects assigned to volumes (tracking) that give
© material properties
© dEdx(PDG, p, flightlength)
O optionally: dEdx(PDG, p, tracjectory) ?

® material properties/names should be consistent

. © with geant4
© NIST database (the same ?)

Field map
LCGO needs to provide a mechanism for field maps

® should allow simple field definitions in xml file, e.g.
0 <BField x="0.0" y="0.0" z="4.0" unit="Tesla"/>
O or better: <BField x="0.0" y="0.0" z="4.0*Tesla" /> (see System of Units)

® should allow arbitrary field map from file, e.g.

© <BFleld file="http://some.server.anywhere/ILCDetailedBField.map"/>
® need well defined file format and corresponding implementation class
need well defined simple interface, e.g.

. © interface Field { public Vector3D at(Vector3D x) ; }

Readout Properties

LCGO drivers need to provide an implementation of an interface to query celllDs, positions and neighbors:

® cellld <-> position

http://gcc.gnu.org/ml/java/2004-03/msg00159.html

¢ cellid range (noise simulation)
® cell sizes
® neighbors

Geometry Elements
we need a full set of geometry classes that allow
® to construct the detailed low level view of the detector

® are used to create other representations
© geant4

b © GDML/LCDD
© HepRep
® all classes currently available in geant4 should be represented - ideally with the same interface
© shapes (Box, Tube, Polycone,....)
© logical volume (with material...)
© physical volumes with placement,i.e.
" rotation
" translation
" parent volume
® initially the volume heirarchy just needs to be static in order to allow creation of other representations
® issues/requiremnents

© names
O copy numbers

© sensitive detectors

O visualization attributes
© user defined attributes

Tracking Geometry
for the tracking (pattern recognition and fitting) a somewhat simplified representation of the detector volumes is needed with
® averaged material (see material, dEdx)
® simple shapes only:
© boxes - planes ?
© tubes - cylinders ?

this tracking geometry should allow to compute:

® intersection with given trajectory

N © line
© helix
GEAR API

the mid and high level view of the geometry should be an extension of the current GEAR API

® should allow to represent current detector concepts' subdetectors
® provide high level view as needed for

. O reconstruction
© digitization
® should provide the geometrical functionality as needed for tracking
® should be the interface all client programs use to get information from LCGO (except low level view)

need to review what is currently in GEAR and define what is missing !

System of Units

it is probably desirable to have a well defined system of units a la Geant4, so that every quantity comes in the properly defined unit. So that one can write
code, such as:

cout << " length of TPC [cm]: " << Icgo->getTPCParameters()->getLength() / cm <<endl;

Vectors and Matrices

need to define classes for vectors and matrices (symmetric) that are used throughout LCGO (and LCIO !?)

3d vectors

rotations 3d
translations (3d vectors)
4 vectors (in LCGO ?)
matrix

symmatrix

	Workpackages

