
Workpackages

Core Framework

a framework has to be set up that

builds under Java 1.4 (Maven, ant,....)

builds with gcj (make)

reads xml files

initially use compact format
gradually extend/modify as needed

drivers need to read xml and implement gear
drivers should create geometry elements

for detailed view (low level)
for tracking view (mid level)

initially export to GDML/LCDD should be suported

optionally some wrapping C++ code should be provided that allows to use LCGO in a C++ programm w/o having to rely on references to Java libraries, e.
g. for the properties interface

need to understand garbage collection for java and C++ objects allocated on the stack and on the heap and passing object between java and c++
java objects are objects inheriting from java::lang::Object
C++ are all other objects

Possibly interesting article http://gcc.gnu.org/ml/java/2004-03/msg00159.html

Material Database

a material data base is needed that

consists of the known materials

has all the material properties needed for dE/dx
A, Z (mean values) , X0, Interaction length,....

check geant4/geant3 which these are
is extensible by the user in input xml files
provides material objects assigned to volumes (tracking) that give

material properties
dEdx(PDG, p , flightlength)
optionally: dEdx(PDG, p , tracjectory) ?

material properties/names should be consistent

with geant4
NIST database (the same ?)

Field map

LCGO needs to provide a mechanism for field maps

should allow simple field definitions in xml file, e.g.
<BField x="0.0" y="0.0" z="4.0" unit="Tesla"/>
or better: <BField x="0.0" y="0.0" z="4.0*Tesla" /> (see System of Units)

should allow arbitrary field map from file, e.g.
<BFIeld file="http://some.server.anywhere/ILCDetailedBField.map"/>

need well defined file format and corresponding implementation class
 need well defined simple interface, e.g.

interface Field { public Vector3D at(Vector3D x) ; }

Readout Properties

LCGO drivers need to provide an implementation of an interface to query cellIDs, positions and neighbors:

cellId <-> position

http://gcc.gnu.org/ml/java/2004-03/msg00159.html

cellid range (noise simulation)
cell sizes
neighbors

Geometry Elements

we need a full set of geometry classes that allow

to construct the detailed low level view of the detector

are used to create other representations
geant4

GDML/LCDD
HepRep

all classes currently available in geant4 should be represented - ideally with the same interface
shapes (Box, Tube, Polycone,....)
logical volume (with material...)
physical volumes with placement,i.e.

rotation
translation
parent volume

initially the volume heirarchy just needs to be static in order to allow creation of other representations
issues/requiremnents

names
copy numbers
sensitive detectors
visualization attributes
user defined attributes

Tracking Geometry

for the tracking (pattern recognition and fitting) a somewhat simplified representation of the detector volumes is needed with

averaged material (see material, dEdx)
simple shapes only:

boxes - planes ?
tubes - cylinders ?

this tracking geometry should allow to compute:

intersection with given trajectory

line
helix
...

GEAR API

 the mid and high level view of the geometry should be an extension of the current GEAR API

should allow to represent current detector concepts' subdetectors
provide high level view as needed for

reconstruction
digitization

should provide the geometrical functionality as needed for tracking
should be the interface all client programs use to get information from LCGO (except low level view)

 need to review what is currently in GEAR and define what is missing !

System of Units

it is probably desirable to have a well defined system of units a la Geant4, so that every quantity comes in the properly defined unit. So that one can write
code, such as:

 cout << " length of TPC [cm]: " << lcgo->getTPCParameters()->getLength() / cm << endl ;

Vectors and Matrices

need to define classes for vectors and matrices (symmetric) that are used throughout LCGO (and LCIO !?)

3d vectors
rotations 3d
translations (3d vectors)
4 vectors (in LCGO ?)
matrix
symmatrix
...

	Workpackages

